Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 20080038-9    https://doi.org/10.11896/cldb.20080038
  金属与金属基复合材料 |
热处理工艺对铝硅合金显微组织和性能影响的研究现状
杨文涛1,2, 何鹏飞2, 刘明2, 周永欣1, 王海斗2, 白宇3, 李青4
1 西安理工大学材料科学与工程学院,西安 710072
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
3 西安交通大学材料科学与工程学院,西安 710049
4 山东联合能源管道输送有限公司,山东 烟台 264006
Review of Effect of Heat Treatment on Microstructure and Properties of Al-Si Alloy
YANG Wentao1,2, HE Pengfei2, LIU Ming2, ZHOU Yongxin1, WANG Haidou2, BAI Yu3, LI Qing4
1 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710072, China
2 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
3 School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
4 Shandong United Energy Pipeline Transportation Co., Ltd., Yantai 264006,Shandong, China
下载:  全 文 ( PDF ) ( 7488KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铝硅合金因其铸造性能好、比强度高和热膨胀系数低被广泛应用于汽车和飞机结构件、电子产品封装、精密仪器加工等领域。热历史会影响铝硅合金的显微组织结构,从而产生相应的性能偏向,导致其在各领域的多样化应用。
后续热处理工艺同样会对其性能造成显著影响,大量研究表明,这种影响主要通过改变共晶硅和初生硅的形态、尺寸或改变合金元素的析出等方式得以实现,而这些组织形态变化在合金成分及制备方式改变时也有体现,目前研究多局限于单一热处理工艺或制备工艺对铝硅合金的影响,实际上不同热处理对不同微观结构铝硅合金性能的影响也是多种多样的。
对有硬度要求的铝硅合金而言,热处理后的析出相对其有很大影响,且析出相的分布又与铝硅合金韧性相关;热处理后硅相的形态球化可以提高铝硅合金的强度及耐磨性,但硅相的尺寸变大又会导致其磨损性能降低。铝硅合金组织与性能的变化是相互对应的,探索总结出其热处理后组织变化,便可定性预测随之产生的性能变化。
本文综述了各种制备方式下热处理对不同成分铝硅合金硬度、强韧性、摩擦学性能与热物性的影响趋势,将之与T1、T4、T5、T6及退火等热处理工艺下的组织演变相对应,以此分析其影响机理,同时对热处理后铝硅合金的上述性能进行分类汇总与对比,以方便根据不同性能需求选择不同热处理工艺。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨文涛
何鹏飞
刘明
周永欣
王海斗
白宇
李青
关键词:  铝硅合金  热处理  组织演变  硬度  强韧性  摩擦学性能  热物性    
Abstract: Al-Si alloy is widely used in the fields of automobile and aircraft structural parts, electronic product packaging, precision instrument processing and so on, because of its good casting performance, high specific strength and low coefficient of thermal expansion. Its various applications in various fields are due to the influence of thermal history on its microstructure, resulting in the corresponding performance bias.
At the same time, the heat treatment process also has a significant impact on the properties of Al-Si alloy. A large number of studies show that this impact is mainly achieved by changing the morphology and size of eutectic silicon and primary silicon, or changing the precipitating of alloying elements and so on, and these changes are also reflected when the alloy compositions and preparation processes changed. In fact, the effect of different heat treatment methods on the properties of Al-Si alloy with different microstructure is also varied.
The precipitation after heat treatment has a great influence on the hardness of Al-Si alloy, and its distribution is related to the toughness of Al-Si alloy; the spheroidization of silicon phase after heat treatment can improve the strength and wear resistance of Al-Si alloy. But the increase of the size of silicon phase will lead to the decrease of wear resistance of the alloy. The changes of microstructure and properties of Al-Si alloy are corresponding to each other. By exploring and summarizing the microstructure evolutions of Al-Si alloy after heat treatment, the change of its properties can be predicted qualitatively.
In this paper, the influence trends of heat treatment on hardness, strength and toughness, tribological properties and thermophysical properties of various Al-Si alloys are reviewed. It is consistent with the microstructure evolutions of T1, T4, T5, T6, annealing and other heat treatment processes, so as to analyze the influence mechanism. At the same time, the above properties of Al-Si alloy after heat treatment were classified, summarized and compared in order to facilitate the selection of different heat treatment processes according to different performance requirements.
Key words:  Al-Si alloy    heat treatment    microstructure evolution    hardness    strength and toughness    tribological property    thermophysical property
发布日期:  2022-06-09
ZTFLH:  TG166.3  
基金资助: 装备预研重点基金项目(61409230607)
通讯作者:  hzaam@163.com; zhouyongxin_88@126.com   
作者简介:  杨文涛,2018年6月毕业于西安理工大学,获得工学学士学位。现为西安理工大学材料科学与工程学院硕士研究生,在周永欣副教授的指导下进行研究。目前主要研究领域为内孔等离子喷涂。
刘明,中国人民解放军陆军装甲兵学院装备再制造技术国防科技重点实验室助理研究员。2001年7月本科毕业于陆军装甲兵学院,2018年12月在陆军装甲兵学院装备保障与再制造系取得博士学位。长期从事表面涂层、等离子喷涂方面的研究工作,先后主持或参与国家级及军队级科研项目10余项,其中主持装发预研重点基金项目1项、武器装备预研基金项目2项,获军队科技进步二等奖2项。授权国家(国防)发明专利10余项,发表论文40余篇。
周永欣,1989年7月毕业于陕西机械学院,获得工学学士学位。2007年5月在西安建筑科技大学取得工学博士学位。目前在西安理工大学材料科学与工程学院从事教学、科研工作。他的研究领域为金属基摩擦磨损材料,精密铸造和消失模技术;压力加工模具设计与新型模具材料研发。作为项目负责人或参加人参与的科研项目30余项,其中纵向课题10余项、国家级基金项目6项、省部级和厅局级基金项目8项、企业委托项目10余项。发表学术论文40余篇,其中被SCI、EI收录10余篇。出版教材一部,参编教材3部,获国家发明专利3项。
引用本文:    
杨文涛, 何鹏飞, 刘明, 周永欣, 王海斗, 白宇, 李青. 热处理工艺对铝硅合金显微组织和性能影响的研究现状[J]. 材料导报, 2022, 36(11): 20080038-9.
YANG Wentao, HE Pengfei, LIU Ming, ZHOU Yongxin, WANG Haidou, BAI Yu, LI Qing. Review of Effect of Heat Treatment on Microstructure and Properties of Al-Si Alloy. Materials Reports, 2022, 36(11): 20080038-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080038  或          http://www.mater-rep.com/CN/Y2022/V36/I11/20080038
1 Miller W S, Zhuang L, Bottema J, et al. Materials Science & Engineering A (Structural Materials: Properties, Microstructure and Processing), 2000, 280(1),37.
2 Samuel A M, Garza-Elizondo G H, Doty H W, et al. Materials & Design, 2015, 80,99.
3 Reyes R V, Bello T S, Kakitani R, et al. Materials Science and Engineering: A, 2017, 685,235.
4 Kang N, Coddet P, Ammar M R, et al. Materials Characterization, 2017, 130,243.
5 Rajaram G, Kumaran S, Rao T S. Tribology Transactions, 2010, 54(1),115.
6 Beijing General Research Institute of Mining & Metallurgy. China metallurgical encyclopedia, Metallurgical Industry Press, China,2001,pp.83 (in Chinese).
北京太冶研究总院.中国冶金百科全书,冶金工业出版社,2001,pp.83.
7 Li H D. Dictionary of modern material science and engineering, Shandong science and Technology Press, China,2001,pp.106 (in Chinese).
李恒德. 现代材料科学与工程辞典, 山东科学技术出版社, 2001,pp.106.
8 Sjölander E, Seifeddine S. Journal of Materials Processing Technology, 2010, 210(10),1249.
9 Moustafa M A, Samuel F H, Doty H W. Journal of Materials Science, 2003, 38(22),4507.
10 Crowell N, Shivkumar S. AFS Trans, 1995, 107(8),721.
11 Parker B A, Saunders D S, Griffiths J R. Metals Forum,1982,5(1),48.
12 Rometsch P A, Arnberg L, Zhang D L. International Journal of Cast Metals Research, 1999, 12(1),1.
13 Lumely R N, Schaffer G B. Metal Powder Report,1997,52(7),17.
14 Farkoosh A R, Javidani M, Hoseini M, et al. Journal of Alloys and Compounds, 2013, 551,596.
15 Sokolowski J G, Sun X C, Byczynski G, et al. Journal of Materials Processing Technology, 1995, 53(1-2),385.
16 Gupta M, Ling S. Journal of Alloys & Compounds, 1999, 287(1-2), 1.
17 Kasprzak W, Kurita H, Birsan G, et al. Materials & Design, 2016,73(3),365.
18 Guinier A. Solid State Physics, 1959, 9(48),293.
19 Lumley R N, Polmear I J, Curtis P R. Metallurgical and Materials Tran-sactions A, 2009, 40(7),1716.
20 Wang H, Yu F X, Sun Z G. Foundry, 2007, 56(1),65 (in Chinese).
王话, 于福晓, 孙振国. 铸造, 2007, 56(1),65.
21 Xie L C, Peng C Q, Wang R C, et al. Chinese Journal of Non-ferrous Metals,2014,24(1),130 (in Chinese).
解立川,彭超群,王日初,等. 中国有色金属学报,2014,24(1),130.
22 Xie Z D, Shen J, Sun J F, et al. Powder Metallurgy Technology, 2002(4), 205 (in Chinese).
谢壮德,沈军,孙剑飞,等. 粉末冶金技术,2002(4),205.
23 Wang A Q, Xie J P, Wang W Y, et al. Journal of Material Heat Treatment, 2013 (1), 86 (in Chinese).
王爱琴, 谢敬佩, 王文焱,等. 材料热处理学报, 2013(1),86.
24 Ritchie R O. Nature Materials, 2011, 10(11),817.
25 Yu W, Zhao H, Wang L, et al. Journal of Alloys & Compounds, 2018, 73(1),444.
26 Yin D, Xiao Q, Chen Y, et al. Materials & Design, 2016, 9(5),329.
27 Cao F, Jia Y, Prashanth K G, et al. Materials & Design,2015,7(4),150.
28 Hong S J, Suryanarayana C. Metallurgical & Materials Transactions A, 2005, 36(13),715.
29 Hu Z P, Jiang J, Liao F J, et al. Journal of Materials Research, 2018, 32 (10), 25 (in Chinese).
胡钟鹏, 江峻, 廖福锦,等. 材料研究学报, 2018, 32(10),25.
30 Cai Z Y, Wang R C, Zhang C, et al. Chinese Journal of Non Ferrous Metals, 2015,25(3), 618 (in Chinese).
蔡志勇,王日初,张纯,等. 中国有色金属学报,2015,25(3),618.
31 Baik K, Seok H, Kim H, et al. Journal of Materials Research, 2005, 20(8),2038.
32 Cai Z Y, Zhang C, Wang R C, et al. Progress in Natural Science: Materials International,2016,26(4),391.
33 Varga B, Fazakas E, Hargitai H, et al. Journal of Physics Conference, 2009, 144(1),012105.
34 Gomes L F, Spinelli J E, Bogno A A, et al. Journal of Alloys & Compounds, 2019, 37(6),18.
35 Prashanth K G, Scudino S, Klauss H J, et al. Materials ence and Engineering, 2014, 590(3),153.
36 Pan Ma, Konda Prashanth, Sergio Scudino, et al. Metals,2014,4(1),74.
37 Lumley R N, O'Donnell R G, Gunasegaram D R, et al. Metallurgical & Materials Transactions A, 2007, 38(10),2564.
38 Wu W J, Wang A Q, Xie J P, et al. Journal of Material Heat Treatment, 2015(4), 60 (in Chinese).
吴文杰, 王爱琴, 谢敬佩,等. 材料热处理学报, 2015(4),60.
39 Xu C L, Yang Y F, Wang H Y, et al. Journal of Materials Science, 2007, 42(15),6331.
40 Ogris E, Wahlen A, Lüchinger H, et al. Journal of Light Metals, 2002, 2(4),263.
41 Sawla S, Das S. Wear, 2004, 257(5),555.
42 Ganiger B, Chandrashekharaiah T M, Prasad T B, et al. Materials Today Proceedings, 2018, 5(11),25165.
43 Elmadagli M, Perry T, Alpas A T. Wear, 2007, 262(1-2),79.
44 Prashanth K G, Debalina B, Wang Z, et al. Journal of Materials Research, 2014, 29(17),2044.
45 Hatch J E. American Society for Metals,1984,pp.195.
46 Tritt T M. Thermal Conductivity: Theory, 2004, 38 (7),67.
47 Lumley R N, Polmear I J, Groot H, et al. Scripta Materialia, 2008, 58(11),1006.
48 Choi S W, Cho H S, Kang C S, et al. Journal of Alloys and Compounds,2015,66(24),647.
49 Abis S, Massazza M, Mengucci P, et al. Scripta Materialia, 2001, 45(6),685.
50 Jia Y D, Ma P, Prashanth K G, et al. Journal of Alloys & Compounds, 2017, 69(9),548.
[1] 孟旭, 水中和, 费洗非. 矿物掺合料对水泥制品表观性能的影响[J]. 材料导报, 2022, 36(Z1): 22040176-5.
[2] 史天宇, 孔维雄, 陈雨琳, 宁保群, 董治中. 新型高氮马氏体耐热铸钢的热处理及相变解析[J]. 材料导报, 2022, 36(Z1): 20120084-6.
[3] 李朝阳, 黄光杰, 曹玲飞, 曹宇, 林林. 升温速率对AA2060铝锂合金中间形变热处理微观组织的影响[J]. 材料导报, 2022, 36(7): 21020008-7.
[4] 龙伟民, 秦建, 路全彬, 刘大双, 吴爱萍. 旋耕刀感应钎涂层热处理工艺研究[J]. 材料导报, 2022, 36(7): 21090163-5.
[5] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[6] 贾红敏, 常剑秀. 定向凝固镁合金的研究进展及应用前景[J]. 材料导报, 2022, 36(6): 20060149-7.
[7] 仉建波, 李京桉, 彭远祎, 夏兴川, 刘畅, 丁俭, 陈学广, 刘永长. ATI 718Plus高温合金微观组织与性能研究进展[J]. 材料导报, 2022, 36(4): 20050167-8.
[8] 熊光耀, 李圣鑫, 李波, 沈明学. 面向低温环境的聚合物摩擦学性能及其改性研究进展[J]. 材料导报, 2022, 36(3): 20070001-6.
[9] 张华炜, 刘悦, 范同祥. 铸造耐热铝合金的研究进展及展望[J]. 材料导报, 2022, 36(2): 20120048-9.
[10] 赵燕春, 李暑, 李春玲, 赵鹏彪, 李文生, 寇生中, 阎峰云. 热处理对铁基中熵合金微观结构及力学性能的影响[J]. 材料导报, 2022, 36(1): 20090161-5.
[11] 赵帆, 胡昊, 刘雅政, 张志豪, 谢建新. 基于23MnNiMoCr54钢复杂显微组织和表面脱碳演变规律的退火条件控制[J]. 材料导报, 2022, 36(1): 20100217-6.
[12] 李博帅, 鲁金涛, 朱明, 黄锦阳, 党莹樱, 谷月峰. 镍铁基高温合金摩擦焊接接头在煤灰/烟气中的腐蚀行为[J]. 材料导报, 2021, 35(Z1): 395-401.
[13] 王永田, 魏啸天, 赵祎璠, 王嘉伟. 高硼含量的铁基非晶复合涂层的制备与性能研究[J]. 材料导报, 2021, 35(Z1): 425-428.
[14] 袁傲明, 任学平. 固溶时效对1Cr21Ni5Ti双相不锈钢组织的影响[J]. 材料导报, 2021, 35(Z1): 443-446.
[15] 欧黎明, 毛丰, 乔永枫, 高梦锞, 吴修德, 魏世忠. 稀土元素Eu和冷却速率对Al-7Si合金中共晶硅的影响[J]. 材料导报, 2021, 35(8): 8103-8107.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed