Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 20080027-14    https://doi.org/10.11896/cldb.20080027
  无机非金属及其复合材料 |
高性能锂硫电池研究进展与改进策略
冯阳, 汪港, 陈君妍, 康卫民, 邓南平, 程博闻
天津工业大学纺织科学与工程学院,分离膜与膜过程国家重点实验室,天津 300387
Research Progress and Improvement Strategy of High-performance Lithium Sulfur Battery
FENG Yang, WANG Gang, CHEN Junyan, KANG Weimin, DENG Nanping, CHENG Bowen
State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
下载:  全 文 ( PDF ) ( 11503KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着化石能源消耗及电动汽车(EVs)、便携式设备和电网存储的快速发展,传统锂离子电池已经不能满足人们对电池储能日益增长的需要,寻找下一代绿色储能系统也变得十分迫切。近年来,高能量密度低成本的锂硫电池(LSBs)技术得到了研究者们的极大关注。从理论上讲,正极的面积容量直接由硫含量和面载量共同决定。因此,为了提高LSBs的面积容量和能量密度,开发具有高性能的高载硫锂硫电池(HLSBs)势在必行。然而,目前LSBs实际能达到的能量密度远低于其理论能量密度。其主要原因可以归结于多硫化物(LiPSs)的“穿梭效应”、硫和二硫化锂/硫化锂(Li2S2/Li2S)的导电性差以及锂枝晶生长等问题。更重要的是,当载硫量增加到实际应用水平时,上述问题变得更加严重。为解决这些问题,研究者们开发了不同策略来抑制LiPSs的“穿梭效应”,如物理包覆、静电排斥与极性吸附等。其中由于一些材料具有极性作用、表面缺陷等优点,引起了研究者们的广泛关注,因此研究者们相继开发了一维、二维以及三维等不同结构的催化材料来加快氧化还原反应,使得电池的循环寿命得以延长和库伦效率得到提高。尽管在提升性能方面已经取得很多进步,但这项技术的商业化前景取决于能否将其制成耐用且安全的电池系统。因此研究小组开发了新型功能性电解液添加剂、高性能隔膜和中间层、以及微/纳米结构的锂负极或锂复合负极稳定金属锂,从而提高电池安全性。从商业化的角度来看,LSBs的面积容量和能量密度需分别达到5 mAh·cm-2和500 Wh·kg-1,才能满足商业化EVs的需求。因此在提高其性能的同时,也需不断提高硫的负载量,以求达到更高的能量密度。
本文通过对近年来HLSBs的研究成果进行整理和总结,从三个方面综述了高性能的HLSBs的基础研究和发展策略,具体包括抑制LiPSs“穿梭效应”、电催化策略和整体安全策略。这些研究策略在抑制LiPSs“穿梭效应”、提高活性物质的利用效率方面,尤其在延长电池循环寿命和提高安全性方面有显著效果。最后,本文展望了高性能的HLSBs面临的科学挑战与未来发展的机遇。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯阳
汪港
陈君妍
康卫民
邓南平
程博闻
关键词:  高载硫锂硫电池  穿梭效应  吸附策略  催化作用  锂枝晶    
Abstract: With the consumption of fossil fuels and the rapid development of electric vehicles (EVs), portable devices and grid storage, traditional lithiu-mion batteries are unable to satisfy the ever-increasing demand of society. It is very important for researchers to explore for replaceable green new energy sources. In recent years, high-energy density and low-cost lithium sulfur batteries (LSBs) technology has received great attention. In theory, the area capacity of the cell cathode is directly determined by the sulfur content and the sulfur loading. Therefore, it is imperative to deve-lop high-performance lithium sulfur batteries (HLSBs) with high loading for improving the area capacity and energy density. However, the actual energy density of LSBs is far lower than its theoretical value. The main reasons can be summarized in the ‘Shuttle effect' of lithium polysulfides (LiPSs), the poor conductivity of sulfur and lithium sulfide (Li2S2/Li2S) and uncontrollable growth of lithium dendrites. More importantly, the above-mentioned problems will become more serious when the sulfur loading increases to the practical application level. In response to these problems, researchers have designed various strategies to suppress the “shuttle effect” of LiPSs, such as physical coating, electrostatic repulsion and polar adsorption. Moreover, some nano-catalytic materials have attracted wide attention from researchers due to the polar effect, surface defects and other advantages. Therefore, researchers have successively developed various catalytic materials with different structures such as one-dimensional, two-dimensional and three-dimensional to accelerate the redox reaction, which has effectively improved the cycle life and coulombic efficiency of LSBs. Although researchers have made great contributions in terms of cycle life, the commercialization prospects of the technology depend on whether it can be made into durable and safe battery system. Therefore, the researching teams has developed new functional electrolyte additives, high-performance separators and interlayers, and micro/nano-structured lithium anodes or lithium composite anodes to stabilize lithium anodes for improving battery safety. From the perspective of commercialization, the area capacity and energy density of LSBs need to reach 5 mAh·cm-2 and 500 Wh·kg-1 to meet the requirements of commercial EVs. Thus, researchers are not only improving battery performance, but also constantly increasing the sulfur loading to achieve higher energy density, which is closer to commercial requirements.
In this review, the current development strategies for high performance HLSBs are presented and reviewed from three aspects including the suppression of LiPSs ‘Shuttle effect', electrocatalysis strategy and overall safety strategy. These strategies have significant effects on inhibiting the ‘Shuttle effect' and improving the utilization efficiency of active substances, especially on prolonging the cycle life and safety. At last, the future challenges and opportunities of high-performance HLSBs have also been indicated.
Key words:  high-loading lithium sulfur battery    shuttle effect    adsorption strategy    catalytic effect    lithium dendrite
发布日期:  2022-06-09
ZTFLH:  TM919  
  O646  
基金资助: 国家自然科学基金(51673148;51678411);中国博士后基金(2019M651047)
通讯作者:  kangweimin@tiangong.edu.cn; dengnanping@tiangong.edu.cn   
作者简介:  冯阳,现为天津工业大学硕士研究生,在康卫民教授的指导下进行研究。目前主要研究领域为静电纺纳米纤维在锂金属电池中的应用。
邓南平,在天津工业大学获得纺织科学与工程博士学位,并在天津工业大学材料科学与工程专业完成博士后的工作。现在,他在天津工业大学是一名讲师。主要研究方向是锂离子电池、锂硫电池和压电纳米发电机用电纺纳米纤维的基础能源科学和商业应用。
康卫民,从2007年开始在中国天津工业大学工作,2012年在天津工业大学获得纺织化工博士学位。2017年被任命为教授。主要研究方向是设计、制备和评价新型纳米纤维及其在催化、过滤、能量收集和储存等领域的应用。
引用本文:    
冯阳, 汪港, 陈君妍, 康卫民, 邓南平, 程博闻. 高性能锂硫电池研究进展与改进策略[J]. 材料导报, 2022, 36(11): 20080027-14.
FENG Yang, WANG Gang, CHEN Junyan, KANG Weimin, DENG Nanping, CHENG Bowen. Research Progress and Improvement Strategy of High-performance Lithium Sulfur Battery. Materials Reports, 2022, 36(11): 20080027-14.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080027  或          http://www.mater-rep.com/CN/Y2022/V36/I11/20080027
1 Bonnick P, Muldoon J. Energy & Environmental Science,2020,13(12), 4808.
2 Manthiram A, Fu Y, Chung S H, et al. Chemical Reviews, 2014, 114(23), 11751.
3 Peng H J, Huang J Q, Cheng X B, et al. Advanced Energy Materials, 2017, 7(24), 1700260.
4 Lin Z, Liang C D. Journal of Materials Chemistry A, 2015, 3(3), 936.
5 Chen W, Hu Y, Lei T Y, et al. Advanced Energy Materials, 2020, 10(17), 2000082.
6 Pang Q, Liang X, Kwok C Y, et al. Nature Energy, 2016, 1(9), 16132.
7 Seh Z W, Sun Y, Zhang Q, et al. Chemical Society Reviews, 2016, 45(20), 5605.
8 Liu Y T, Liu S, Li G R, et al. Advanced Materials, 2021, 33(8), 2003955.
9 Li X L, Liu M, Jiang J C, et al. Journal of Chongqing University of Technology(Natural Science), 2020, 34(2), 40(in Chinese).
李旭玲,刘 梦,姜久春,等. 重庆理工大学学报(自然科学版),2020, 34(2), 40.
10 Kang W M, Deng N P, Ju J G, et al. Nanoscale, 2016, 8(37), 16541.
11 Lin D C, Liu Y Y, Cui Y. Nature Nanotechnology, 2017, 12(3), 194.
12 Peng H J, Huang J Q, Zhang Q. Chemical Society Reviews, 2017, 46(17), 5237.
13 Liu M, Deng N P, Ju J G, et al. Advanced Functional Materials, 2019, 29, 1905467.
14 Deng N P, Ma X M, Ruan Y L, et al. Progress of Chemistry, 2016, 28(9), 1435(in Chinese).
邓南平, 马晓敏, 阮艳丽, 等. 化学进展, 2016, 28(9), 1435.
15 Liu J W, Wang J N, Zhu L, et al. Materials Reports A:Review Papers, 2020, 34(1), 1155(in Chinese).
刘建伟, 王嘉楠, 朱蕾, 等. 材料导报:综述篇, 2020, 34(1), 1155.
16 Zhang Q, Cheng X B, Huang J Q, et al. New Carbon Materials, 2014, 29(4), 241(in Chinese).
张强, 程新兵, 黄佳琦, 等. 新型炭材料, 2014, 29(4), 241.
17 Bai S Y, Kim B H, Kim C R, et al. Nature Nanotechnology, 2021, 16(1), 77.
18 Li Z, Guan B Y, Zhang J T, et al. Joule, 2017, 1(3), 576.
19 Li Z, Zhang J T, Chen Y M, et al. Nature Communications, 2015, 6, 8850.
20 Pei F, Lin L L, Fu A, et al. Joule, 2018, 2(2), 323.
21 Hui P, Yang R, Deng Q J, et al. Chemistry Bulletin, 2019, 82(11), 982(in Chinese).
惠鹏, 杨蓉, 邓七九, 等. 化学通报, 2019, 82(11), 982.
22 Huang J Q, Sun Y Z, Wang Y F, et al. Acta Chimica Sinica, 2017, 75(2), 173.
23 Dong L W, Liu J P, Chen D J, et al. ACS Nano, 2019, 13(12), 14172.
24 Li G R, Lu F, Dou X Y, et al. Journal of the American Chemical Society, 2020, 142(7), 3583.
25 Wu F X, Lv H F, Chen S Q, et al. Advanced Functional Materials, 2019, 29(27), 1902820.
26 Zhang T, Tang T Y, Hou Y L. Materials Reports A:Review Papers, 2019, 33 (1), 90(in Chinese).
张腾, 唐天宇, 侯仰龙. 材料导报:综述篇, 2019, 33 (1), 90.
27 Chen Z C, Fang R Y, Liang C, et al. Materials Reports A:Review Papers, 2018, 32 (5), 1401(in Chinese).
陈子冲, 方如意, 梁初, 等. 材料导报:综述篇,2018,32 (5),1401.
28 Huang X, Tang J Y, Luo B, et al. Advanced Energy Materials, 2019, 9(32), 1901872.
29 Xiao X, Wang H, Bao W Z, et al. Advanced Materials, 2019, 31(33), 1902393.
30 Li G, Lei W, Luo D, et al. Energy & Environmental Science, 2018, 11(9), 2372.
31 Zheng Z J, Ye H, Guo Z P. Energy & Environmental Science, 2021, 14(4), 1835.
32 Liu T, Sun S M, Song W, et al. Journal of Materials Chemistry A, 2018, 6(46), 23486.
33 Zhang Y Z, Wang R C, Tang W Q, et al. Journal of Materials Chemistry A, 2018, 6(42), 20926.
34 Balach J, Linnemann J, Jaumann T, et al. Journal of Materials Chemistry A, 2018, 6(46), 23127.
35 Zhao T, Ye Y S, Peng X Y, et al. Advanced Functional Materials, 2016, 26(46), 8418.
36 Chen M F, Jiang S X, Huang C, et al. ACS Applied Materials & Interfaces, 2018, 10(16), 13562.
37 Xu J, Zhang W X, Chen Y, et al. Journal of Materials Chemistry A, 2018, 6(6), 2797.
38 Tao X Y, Wang J G, Liu C, et al. Nature Communications, 2016, 7, 11203.
39 Liu F, Xiao Q F, Wu H B, et al. ACS Nano, 2017, 11(3), 2697.
40 Zhao S P, Li Y P, Zhang F X, et al. Journal of Alloys and Compounds, 2019, 805, 873.
41 Li C X, Xi Z C, Guo D X, et al. Small, 2018, 14(4), 1701986.
42 Li Z H, He Q, Xu X, et al. Advanced Materials, 2018, 30(45), 1804089.
43 Ma L B, Yuan H, Zhang W J, et al. Nano Letters, 2017, 17(12), 7839.
44 Shi N X, Xi B J, Feng Z Y, et al. Advanced Materials Interfaces, 2019, 6(9), 1802088.
45 Zhuang R Y, Yao S S, Liu M H, et al. International Journal of Energy Research, 2019, 43(13), 7655.
46 Bao W Z, Liu L, Wang C Y, et al. Advanced Energy Materials, 2018, 8(13), 1702485.
47 Zheng Y, Zheng S S, Xue H G, et al. Journal of Materials Chemistry A, 2019, 7(8), 3469.
48 Guo Y, Sun M H, Liang H Q, et al. ACS Applied Materials & Interfaces, 2018, 10(36), 30451.
49 Lopez J, Mackanic D G, Cui Y, et al. Nature Reviews Materials, 2019, 4(5), 312.
50 Fu X W, Scudiero L, Zhong W H. Journal of Materials Chemistry A, 2019, 7(4), 1835.
51 Zhang Z W, Peng H J, Zhao M, et al. Advanced Functional Materials, 2018, 28(38), 1707536.
52 Wang N N, Xu Z F, Xu X, et al. ACS Applied Materials & Interfaces, 2018, 10(16), 13573.
53 Zeng P, Huang L W, Zhang X L, et al. Chemical Engineering Journal, 2018, 349, 327.
54 Chen P, Fu Y S, Wu Z, et al. Journal of Power Sources, 2019, 434, 226728.
55 Babu D B, Ramesha K. Carbon, 2019, 144, 582.
56 Tang T Y, Hou Y L. Small Methods, 2019, 4(6), 1900001.
57 He J R, Manthiram A. Energy Storage Materials, 2019, 20, 55.
58 Hong X D, Wang R, Liu Y, et al. Journal of Energy Chemistry, 2020, 42, 144.
59 Wang P, Xi B J, Huang M, et al. Advanced Energy Materials, 2021, 11(7), 2002893.
60 Lim W G, Kim S, Jo C S, et al. Angewandte Chemie International Edition, 2019, 58(52), 18746.
61 Song Y Z, Cai W L, Kong L, et al. Advanced Energy Materials, 2019, 10(11), 1901075.
62 Sun Y M, Liu N, Cui Y. Nature Energy, 2016, 1(7), 16071.
63 Peng L L, Wei Z Y, Wan C Z, et al. Nature Catalysis, 2020, 3(9), 762.
64 Zhou G M, Zhao S Y, Wang T S, et al. Nano Letters, 2020, 20(2), 1252.
65 Zhao C, Xu G L, Yu Z, et al. Nature Nanotechnology, 2021, 16(2), 166.
66 Gu X X, Lai C. Energy Storage Materials, 2019, 23, 190.
67 Liu Y T, Han D D, Wang L, et al. Advanced Energy Materials, 2019, 9(11), 1803477.
68 Zhou G M, Xu L, Hu G H, et al. Chemical Reviews, 2019, 119(20), 11042.
69 Shen Z H, Cao M Q, Zhang Z L, et al. Advanced Functional Materials, 2019, 30(3), 1906661.
70 Ali T, Yan C L. Chemsuschem, 2019, 13(6), 1447.
71 Li B, Xu H F, Ma Y, et al. Nanoscale Horizons, 2019, 4(1), 77.
72 Shao Q J, Wu Z S, Chen J. Energy Storage Materials, 2019, 22, 284.
73 Wang D, Li F, Lian R, et al. ACS Nano, 2019, 13, 11078.
74 Li J B, Chen C Y, Chen Y W, et al. Advanced Energy Materials, 2019, 9, 1901935.
75 Xu Z L, Lin S H, Onofrio N, et al. Nature Communications, 2018, 9(1), 4164.
76 He B, Li W C, Zhang Y, et al. Journal of Materials Chemistry A, 2018, 6(47), 24194.
77 Li L, Chen L, Mukherjee S, et al. Advanced Materials, 2017, 29(2), 1602734.
78 Fan Y, Yang Z, Hua W X, et al. Advanced Energy Materials, 2017, 7(13), 1602380.
79 Fan G L, Li F, Evans D G, et al. Chemical Society Reviews, 2014, 43(20), 7040.
80 Li Y, Fan J, Zhang J, et al. ACS Nano, 2017, 11(11), 11417.
81 Xiao Z B, Li Z L, Meng X P, et al. Journal of Materials Chemistry A, 2019, 7(40), 22730.
82 Song Y Z, Sun Z T, Fan Z D, et al. Nano Energy, 2020, 70, 104555.
83 Cheng Z B, Chen Y L, Yang Y S, et al. Advanced Energy Materials, 2021, 11(12), 2003718.
84 Wu H B, Lou X W. Science Advances, 2017, 3, 9252.
85 Zhong Y J, Xu X M, Liu Y, et al. Polyhedron, 2018, 155, 464.
86 Yang Y X, Wang Z H, Jiang T Z, et al. Journal of Materials Chemistry A, 2018, 6(28), 13593.
87 Zhang J T, Li Z, Chen Y, et al. Angewandte Chemie International Edition, 2018, 57(34), 10944.
88 Zhang J T, Hu H, Li Z, et al. Angewandte Chemie International Edition, 2016, 55(12), 3982.
89 Guan B, Zhang Y, Fan L S, et al. ACS Nano, 2019, 13(6), 6742.
90 Ding M, Huang S Z, Wang Y, et al. Journal of Materials Chemistry A, 2019, 7(43), 25078.
91 Chen Y, Zhang W X, Zhou D, et al. ACS Nano, 13(4), 4731.
92 Luo D, Li G R, Deng Y P, et al. Advanced Energy Materials, 2019, 9(18), 1900228.
93 Deng N P, Liu Y, Li Q X, et al. Energy Storage Materials, 2019, 23, 314.
94 Cheng X B, Zhang Q. Progress of Chemistry, 2018, 30 (1), 51(in Chinese).
程新兵, 张强. 化学进展, 2018, 30 (1), 51.
95 Zhang H, Eshetu G G, Judez X, et al. Angewandte Chemie International Edition, 2018, 57(46), 15002.
96 Fan L L, Deng N P, Yan J, et al. Chemical Engineering Journal, 2019, 369, 874.
97 Jeong Y C, Kim J H, Nam S, et al. Advanced Functional Materials, 2018, 28(38), 1707411.
98 Li W Y, Yao H B, Yan K,et al. Nature Communications, 2015, 6, 7436.
99 Yang T Z, Qian T, Liu J, et al. ACS Nano, 2019, 13(8), 9067.
100 Tang B, Wu H, Du X F, et al. Small, 2020, 16(5), 1905737.
101 Pei F, Dai S, Guo B F, et al. Energy & Environmental Science, 2021, 14(2), 975.
102 Judez X, Martinez-Ibañez M, Santiago A, et al. Journal of Power Sources, 2019, 438(31),226985.
103 Xu S M, McOwen D W, Zhang L, et al. Energy Storage Materials, 2018, 15, 458.
104 Rana M, Li M, Huang X, et al. Journal of Materials Chemistry A, 2019, 7(12), 6596.
105 Wang L, Deng N P, Fan L L, et al. Materials Letters, 2018, 233, 224.
106 Zhao H J, Deng N P, Kang W M, et al. Energy Storage Materials, 2019, 26, 334.
107 Deng N P, Liu Y, Li Q X, et al. Chemical Engineering Journal, 2019, 382, 122918.
108 Guo D, Ming F W, Su H, et al. Nano Energy, 2019, 61, 478.
109 Li Y J, Wang W Y, Liu X X, et al. Energy Storage Materials, 2019, 23, 261.
110 Zhao Y Y, Ye Y S, Wu F, et al. Advanced Materials, 2019, 31(12), 1806532.
111 Zhang H M, Liao X B, Guan Y P, et al. Nature Communications, 2018, 9, 3729.
112 Cha E, Patel M D, Park J, et al. Nature Nanotechnology, 2018, 13(4), 337.
113 Pei F, Fu A, Ye W B, et al. ACS Nano, 2019, 13(7), 8337.
114 Kong L L, Wang L, Ni Z C, et al. Advanced Functional Materials, 2019, 29(13), 1808756.
[1] 赵文文, 王韵芳, 段东红, 刘世斌, 周娴娴, 陈良. 金属有机骨架衍生的层状Co3O4/C在锂硫电池中的应用[J]. 材料导报, 2022, 36(6): 20120257-7.
[2] 李锐, 孙晓刚, 黄雅盼, 魏成成, 梁国东, 邹婧怡, 徐宇浩, 何强. 三维多孔碳纳米片PC/CNT夹层高性能锂硫电池[J]. 材料导报, 2020, 34(16): 16006-16010.
[3] 张腾, 唐天宇, 侯仰龙. 面向锂硫电池的高负载量碳硫复合正极材料研究进展[J]. 材料导报, 2019, 33(1): 90-102.
[4] 王杰, 孙晓刚, 陈珑, 邱治文, 蔡满园, 李旭, 陈玮. 利用二硫苏糖醇夹层抑制锂硫电池的穿梭效应[J]. 《材料导报》期刊社, 2018, 32(7): 1079-1083.
[5] 孙舒鑫, 焦体峰, 张乐欣. 载银纳米颗粒多响应性复合水凝胶研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 62-68.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed