Please wait a minute...
材料导报  2019, Vol. 33 Issue (1): 90-102    https://doi.org/10.11896/cldb.201901010
  材料与可持续发展(一)——面向洁净能源的先进材料 |
面向锂硫电池的高负载量碳硫复合正极材料研究进展
张腾, 唐天宇, 侯仰龙
北京大学工学院,工程科学与先进技术北京市高精尖中心,磁电功能材料与器件北京市重点实验室,北京 100871
Research Progress of High-Loading Carbon/Sulfur Composite Cathode for Lithium-Sulfur Batteries
ZHANG Teng, TANG Tianyu, HOU Yanglong
Beijing Innovation Center for Engineering Science and Advanced Technology, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Engineering, Peking University, Beijing 100871
下载:  全 文 ( PDF ) ( 2850KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在近20多年的发展过程中,锂离子电池已经越来越接近于其理论能量密度的极限,并且随着化石能源消耗和电动车需求量的增加,锂离子电池已经不能满足于社会的需要,寻找可替代的绿色新能源也变得愈发重要。其中,锂硫电池是最有希望代替锂离子电池,成为下一代电化学储能系统的电池之一。由于硫的无毒性、低成本和高的能量密度等优势,使得锂硫电池吸引了研究者们的广泛关注。硫作为锂硫电池中非常重要的一部分——正极材料,对于电池的循环寿命、循环稳定性、能量密度、库伦效率等方面产生了非常重要的影响。但是锂硫电池中存在的关键问题亦限制了其实际应用,例如硫的导电性差、多硫化物中间体的“穿梭效应”、较低的硫负载量、大的体积膨胀以及复杂的内部反应机理等。为了提高锂硫电池整体的性能,设计具有高的比表面积、优越的导电性以及更多的活性位点的基底材料来负载硫变得越来越重要。为解决这些问题,研究者们设计了各种不同材料来进行硫的负载,例如碳-硫复合材料、金属氧化物-硫复合材料、聚合物-硫复合材料等。其中由于碳材料具有密度低、比表面积大、导电性好、结构多样、易于加工制备和价格低廉等优点,引起了研究者们的广泛关注,因此研究者们相继实现了用一维、二维以及三维等不同结构的碳材料来负载硫,使得锂硫电池的循环寿命、循环稳定性和库伦效率得到了有效的提高。虽然在循环寿命等方面,研究者们做出了很大的贡献,但是硫的负载量却有限,从而导致电池整体的能量密度仍然很低。从商业化的角度来看,电池能量密度的高低才是研究者们关注的重点,因此研究者们在提高其性能的同时,也在不断地提高硫的负载量,以求达到更高的能量密度。
   本文主要从四个方面进行了相关总结:首先,概述了锂硫电池最新发展状况;其次,概要介绍了锂硫电池中存在的反应机理和阻碍锂硫电池发展的主要问题;再次,重点总结了提高锂硫电池的性能和载硫量方面的研究进展,并简单介绍了面载量、面容量和电解液与硫的比值对电池整体性能的影响;最后,总结和展望了锂硫电池未来可能的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张腾
唐天宇
侯仰龙
关键词:  锂硫电池  硫的负载量  穿梭效应  碳/硫复合正极  碳纳米材料    
Abstract: After two decades of development, lithium ion batteries are approaching their theoretical energy density limit and unable to satisfy the demand of society with the consumption of fossil fuels and the increase of electric vehicles. It is very important for researchers to look for replaceable green new energy sources. Among all the batteries, lithium-sulfur batteries are one of the most promising alternatives to lithium-ion batteries as the next generation of electrochemical energy storage systems, due to their advantages of non-toxicity, low materials cost, high energy density and so on. Tremendous attentions have been paid on lithium-sulfur batteries by researchers. They are very promising to be commercialized. As a vital part of cathode electrode, the host materials of sulfur usually have a strong impact on the cycle life, cycle stability, energy density and Coulombic efficiency of lithium-sulfur batteries. However, there are many problems to increasingly hamper their applications, such as the lower conductivity of sulfur, shuttle effect, the lower-loading of sulfur, huge volumetric expansion, complex internal reaction mechanism and so forth. It is becoming more and more important to design a variety of host materials with high specific surface area, superior conductivity and more active site to load sulfur, in purpose of improving the integral performance in lithium-sulfur batteries. In response to these problems, researchers have designed various materials for loading sulfur, such as carbon-based composite materials, metal oxide-based composite materials and polymer-based composite materials. Researchers make great efforts and put a premium on carbon materials especially, due to their advantages of low density, large specific surface, good conductivity, diverse structure, easy to process and produce, low cost and so on. Therefore, researchers have also implemented carbon materials of different structures such as one-dimensional, two-dimensional and three-dimensional for sulfur loading, which has effectively improved the cycle life, cycle stability and coulombic efficiency of lithium-sulfur batteries. Although researchers have made great contributions in terms of cycle life, etc., the loading of sulfur is limited, resulting in a low energy density of the entire battery. From a commercial point of view, researchers are not only improving their performance, but also constantly increase the sulfur loading to achieve higher energy density, which is closer to commercial requirements.
This review summarized the progress in four aspects: First, the recent development history of lithium-sulfur batteries was briefly introduced. Next, we insighted the reaction mechanism and challenges that may exist in lithium-sulfur batteries; Then, unremitting efforts to improve the performance and sulfur loading were summarized and introduce the important influence of areal sulfur loading, areal specific capacity and Electrolyte/sulfur ratio for the whole cell. Finally, the perspective of lithium-sulfur batteries is simply proposed.
Key words:  lithium-sulfur batteries    the loading of sulfur    shuttle effect    carbon/sulfur composite cathode    carbon nanomaterids
               出版日期:  2019-01-10      发布日期:  2019-01-24
ZTFLH:  O646.21  
基金资助: 国家自然科学基金(51631001;51590882;51672010;81421004);国家重点研发计划纳米科技专项(2016YFA0200102;2017YFA0206301)
作者简介:  张腾,2017年6月毕业于兰州大学,获得理学学士学位。侯仰龙,2000年于哈尔滨工业大学获得博士学位,2007年12月加入北京大学工学院任特聘研究员,2012年6月破格晋职为北京大学终身教授,hou@pku.edu.cn。
引用本文:    
张腾, 唐天宇, 侯仰龙. 面向锂硫电池的高负载量碳硫复合正极材料研究进展[J]. 材料导报, 2019, 33(1): 90-102.
ZHANG Teng, TANG Tianyu, HOU Yanglong. Research Progress of High-Loading Carbon/Sulfur Composite Cathode for Lithium-Sulfur Batteries. Materials Reports, 2019, 33(1): 90-102.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201901010  或          http://www.mater-rep.com/CN/Y2019/V33/I1/90
1 Li Q, Mahmood N, Zhu J, et al. Nano Today,2014,9(5),668.2 Mahmood N, Zhang C, Yin H, et al. Journal of Materials Chemistry A,2014,2(1),15.3 Muldoon J, Bucur C B, Oliver A G, et al. Energy & Environmental Science,2012,5(3),5941.4 Yuan S, Huang X, Ma D, et al. Advanced Materials,2014,26(14),2273.5 Zhang C, Mahmood N, Yin H, et al. Advanced Materials,2013,25(35),4932.6 Mahmood N, Zhang C, Liu F, et al. ACS Nano,2013,7(11),10307.7 Mahmood N, Zhang C, Hou Y. Small,2013,9(8),1321.8 Pan H, Hu Y S, Chen L. Energy & Environmental Science,2013,6(8),2338.9 Mahmood N, Zhu J, Rehman S, et al. Nano Energy,2015,15,755.10 Mahmood N, Zhang C, Jiang J, et al. Chemistry-A European Journal,2013,19(16),5183.11 Mahmood N, Hou Y. Advanced Science,2014,1(1),1400012.12 Bruce P G, Freunberger S A, Hardwick L J, et al. Nature Materials,2012,11(1),19.13 Dresselhaus M S, Thomas I L. Nature,2001,414(6861),332.14 Ji L, Lin Z, Alcoutlabi M, et al. Energy & Environmental Science,2011,4(8),2682.15 Xiao J, Mei D, Li X, et al. Nano Letters,2011,11(11),5071.16 Gu X, Wang Y, Lai C, et al. Nano Research,2015,8(1),129.17 Zhu J, Yang D, Yin Z, et al. Small,2014,10(17),3480.18 Gu X, Tong C, Lai C, et al. Journal of Materials Chemistry A,2015,3(32),16670.19 Kim H, Lim H D, Kim J, et al. Journal of Materials Chemistry,2014,2(1),33. 20 Thackeray M M, Wolverton C, Isaacs E D.Energy & Environmental Science,2012,5(7),7854.21 Manthiram A, Fu Y, Chung S H, et al. Chemical Reviews,2014,114(23),11751.22 Zhang S, Ueno K, Dokko K, et al. Advanced Energy Materials,2015,5(16),1500117.23 Agostini M, Scrosati B, Hassoun J. Advanced Energy Materials,2015,5(16),1500481.24 Li D, Han F, Wang S, et al. ACS Applied Materials & Interfaces,2013,5(6),2208.25 Ji X, Lee K T, Nazar L F. Nature Materials,2009,8(6),500.26 Li Z, Huang Y, Yuan L, et al. Carbon,2015,92,41.27 Ma L, Hendrickson K E, Wei S, et al. Nano Today,2015,10(3),315.28 Jayaprakash N, Shen J, Moganty S S, et al. Angewandte Chemie,2011,123(26),6026.29 Li Z, Wu H B, Lou X W D. Energy & Environmental Science,2016,9(10),3061.30 Peng H J, Zhang Q. Angewandte Chemie,2015,54(38),11018.31 Pang Q, Liang X, Kwok C Y, et al. Journal of The Electrochemical Society,2015,162(14),A2567.32 Zhang J, Hu H, Li Z, et al. Angewandte Chemie,2016,55(12),3982.33 Jiang J, Zhu J, Ai W, et al. Nature Communications,2015,6,8622.34 Ma L, Zhuang H L, Wei S, et al. ACS Nano,2015,10(1),1050.35 Wu F, Lee J T, Nitta N, et al. Advanced Materials,2015,27(1),101.36 Cuisinier M, Cabelguen P E, Adams B D, et al. Energy & Environmental Science,2014,7(8),2697.37 Suo L, Hu Y S, Li H, et al. Nature Communications,2013,4,1481.38 Lin Z, Liu Z, Fu W, et al. Angewandte Chemie,2013,125(29),7608.39 Su Y S, Manthiram A. Nature Communications,2012,3,1166.40 Zhou G, Pei S, Li L, et al. Advanced Materials,2014,26(4),664.41 Qie L, Manthiram A. Advanced Materials,2015,27(10),1694.42 Li Z, Zhang J T, Chen Y M, et al. Nature Communications,2015,6,8850.43 Huang C, Xiao J, Shao Y, et al. Nature Communications,2014,5,3015.44 Liang X, Hart C, Pang Q, et al. Nature Communications,2015,6,5682.45 Xu Y, Wen Y, Zhu Y, et al. Advanced Functional Materials,2015,25(27),4312.46 Fan Q, Liu W, Weng Z, et al. Journal of the American Chemical Society,2015,137(40),12946.47 Seh Z W, Sun Y, Zhang Q, et al. Chemical Society Reviews,2016,45(20),5605.48 Hagen M, Hanselmann D, Ahlbrecht K, et al. Advanced Energy Mate-rials,2015,5(16),1401986.49 Li Z, Guan B Y, Zhang J, et al. Joule,2017,1(3),576.50 Rehman S, Khan K, Zhao Y, et al. Journal of Materials Chemistry A,2017,5(7),3014.51 Bruce P G, Freunberger S A, Hardwick L J, et al. Nature Materials,2012,11(1),19.52 Yin Y X, Xin S, Guo Y G, et al. Angewandte Chemie,2013,52(50),13186.53 Evers S, Nazar L F. Accounts of Chemical Research,2012,46(5),1135.54 Yang Y, Zheng G, Cui Y. Chemical Society Reviews,2013,42(7),3018.55 Fang R, Zhao S, Sun Z, et al. Advanced Materials,2017,29(48),1606823.56 Zhang S S. Journal of Power Sources,2013,231,153.57 Mikhaylik Y V, Akridge J R. Journal of the Electrochemical Society,2004,151(11),A1969.58 Gu X, Lai C, Liu F, et al. Journal of Materials Chemistry A,2015,3(18),9502.59 Geng X, Rao M, Li X, et al. Journal of Solid State Electrochemistry,2013,17(4),987.60 Li X, Rao M, Chen D, et al. Electrochimica Acta,2015,166,93.61 Han S C, Song M S, Lee H, et al. Journal of the Electrochemical Society,2003,150(7),A889.62 Li Z, Yuan L, Yi Z, et al. Nanoscale,2014,6(3),1653.63 Tang C, Zhang Q, Zhao M Q, et al. Advanced Materials,2014,26(35),6100.64 Zhao Y, Wu W, Li J, et al. Advanced Materials,2014,26(30),5113.65 Sun Q, Fang X, Weng W, et al. Angewandte Chemie,2015,127(36),10685.66 Cheng X B, Huang J Q, Zhang Q, et al. Nano Energy,2014,4,65.67 Zhu L, Zhu W, Cheng X B, et al. Carbon,2014,75,161.68 Jin F Y, Xiao S, Lu L J, et al. Nano Letters,2015,16,440.69 Ji L, Rao M, Aloni S, et al. Energy & Environmental Science,2011,4(12),5053.70 Zheng G, Yang Y, Cha J J, et al. Nano Letters,2011,11(10),4462.71 Sun F, Wang J, Chen H, et al. ACS Applied Materials & Interfaces,2013,5(12),5630.72 Li Q, Zhang Z, Guo Z, et al. Carbon,2014,78,1.73 Mkhoyan K A, Contryman A W, Silcox J, et al. Nano Letters,2009,9(3),1058.74 Wang J Z, Lu L, Choucair M, et al. Journal of Power Sources,2011,196(16),7030.75 Ji L, Rao M, Zheng H, et al. Journal of the American Chemical Society,2011,133(46),18522.76 Wang X, Zhang Z, Qu Y, et al. Journal of Power Sources,2014,256,361.77 Ma Z, Tao L, Liu D, et al. Journal of Materials Chemistry A,2017,5(19),9412.78 Zhang L, Ji L, Glans P A, et al. Physical Chemistry Chemical Physics,2012,14(39),13670.79 Sun H, Xu G L, Xu Y F, et al. Nano Research,2012,5(10),726.80 Schuster J, He G, Mandlmeier B, et al. Angewandte Chemie,2012,124(15),3651.81 Rehman S, Guo S, Hou Y. Advanced Materials,2016,28(16),3167.82 Li G, Sun J, Hou W, et al. Nature Communications,2016,7,10601.83 Hu G, Xu C, Sun Z, et al. Advanced Materials,2016,28(8),1603.84 Fang R, Zhao S, Hou P, et al. Advanced Materials,2016,28(17),3374.85 Zhao S, Fang R, Sun Z, et al. Small Methods,2018,2(6),1800067.86 Wang C, Su K, Wan W, et al. Journal of Materials Chemistry A,2014,2(14),5018.87 Yuan L, Yuan H, Qiu X, et al. Journal of Power Sources,2009,189(2),1141.88 Chen S R, Zhai Y P, Xu G L, et al. Electrochimica Acta,2011,56(26),9549.89 Guo J, Xu Y, Wang C. Nano Letters,2011,11(10),4288.90 Jayaprakash N, Shen J, Moganty S S, et al. Angewandte Chemie International Edition,2011,50(26),5904.91 Wang H, Yang Y, Liang Y, et al. Nano Letters,2011,11(7),2644.92 Wei S, Zhang H, Huang Y, et al. Energy & Environmental Science,2011,4(3),736.93 Barchasz C, Mesguich F, Dijon J, et al. Journal of Power Sources,2012,211,19.94 Dörfler S, Hagen M, Althues H, et al. Chemical Communications,2012,48(34),4097.95 Evers S, Nazar L F. Chemical Communications,2012,48(9),1233.96 Schuster J, He G, Mandlmeier B, et al. Angewandte Chemie International Edition,2012,51(15),3591.97 Zhao M Q, Liu X F, Zhang Q, et al. ACS Nano,2012,6(12),10759.98 Zhou G, Wang D W, Li F, et al. Energy & Environmental Science,2012,5(10),8901.99 He G, Evers S, Liang X, et al. ACS Nano,2013,7(12),10920.100 Miao L X, Wang W K, Wang A B, et al. Journal of Materials Chemistry A,2013,1(38),11659.101 Moon S, Jung Y H, Jung W K, et al. Advanced Materials,2013,25(45),6547.102 Zhou G, Yin L C, Wang D W, et al. ACS Nano,2013,7(6),5367.103 Chen S, Huang X, Liu H, et al. Advanced Energy Materials,2014,4(8),1301761.104 Chen X, Xiao Z, Ning X, et al. Advanced Energy Materials,2014,4(13),1301988.105 He G, Mandlmeier B, Schuster J, et al. Chemistry of Materials,2014,26(13),3879.106 Huang J Q, Peng H J, Liu X Y, et al. Journal of Materials Chemistry A,2014,2(28),10869.107 Huang J Q, Zhang Q, Peng H J, et al. Energy & Environmental Science,2014,7(1):347.108 Miao L, Wang W, Yuan K, et al. Chemical Communications,2014,50(87),13231.109 Peng H J, Huang J Q, Zhao M Q, et al. Advanced Functional Materials,2014,24(19):2772.110 Peng H J, Liang J, Zhu L, et al. ACS Nano,2014,8(11),11280.111 Qiu Y, Li W, Zhao W, et al. Nano Letters,2014,14(8),4821.112 Song J, Xu T, Gordin M L, et al. Advanced Functional Materials,2014,24(9),1243.113 Sun L, Li M, Jiang Y, et al. Nano Letters,2014,14(7),4044.114 Yang X, Zhang L, Zhang F, et al. ACS Nano,2014,8(5),5208.115 Yuan Z, Peng H J, Huang J Q, et al. Advanced Functional Materials,2014,24(39),6105.116 Zhao M Q, Zhang Q, Huang J Q, et al. Nature Communications,2014,5,3410.117 Chen S, Sun B, Xie X, et al. Nano Energy,2015,16,268.118 Huang J Q, Zhuang T Z, Zhang Q, et al. ACS Nano,2015,9(3),3002.119 Lee C L, Kim I D. Nanoscale,2015,7(23),10362.120 Li W, Liang Z, Lu Z, et al. Advanced Energy Materials,2015,5(16),1500211.121 Ma J, Fang Z, Yan Y, et al. Advanced Energy Materials,2015,5(16),1500046.122 Niu S, Lv W, Zhang C, et al. Journal of Power Sources,2015,295,182.123 Niu S, Lv W, Zhou G, et al. Chemical Communications,2015,51(100),17720.124 Pang Q, Tang J, Huang H, et al. Advanced Materials,2015,27,6021.125 Shi J L, Tang C, Peng H J, et al. Small,2015,11(39),5243.126 Shi J L, Peng H J, Zhu L, et al. Carbon,2015,92,96.127 Song J, Gordin M L, Xu T, et al. Angewandte Chemie,2015,127(14),4399.128 Sun L, Kong W, Jiang Y, et al. Journal of Materials Chemistry A,2015,3(10),5305.129 Wang M, Zhang H, Wang Q, et al. ACS Applied Materials & Interfaces,2015,7(6),3590.130 Yan J, Liu X, Qi H, et al. Chemistry of Materials,2015,27(18),6394.131 You Y, Zeng W, Yin Y X, et al. Journal of Materials Chemistry A,2015,3(9),4799.132 Zhang Z, Jing H K, Liu S, et al. Journal of Materials Chemistry A,2015,3(13),6827.133 Zhao X, Liu Y, Manuel J, et al. ChemSusChem,2015,8(19),3234.134 Zhou G, Zhao Y, Manthiram A. Advanced Energy Materials,2015,5(9),1402263.135 Zhou W, Wang C, Zhang Q, et al. Advanced Energy Materials,2015,5(16),1401752.136 Bucur C B, Muldoon J, Lita A. Energy & Environmental Science,2016,9(3),992.137 Cao Y, Li X, Zheng M, et al. Electrochimica Acta,2016,192,467.138 Ding Y L, Kopold P, Hahn K, et al. Advanced Functional Materials,2016,26(7),1112.139 Fang R, Zhao S, Pei S, et al. ACS Nano,2016,10(9),8676.140 Li H, Yang X, Wang X, et al. Nanoscale,2016,8(4),2395.141 Li Y, Cai Q, Wang L, et al. ACS Applied Materials & Interfaces,2016,8(36),23784.142 Liu Y, Wang X, Dong Y, et al. Chemical Communications,2016,52(87),12825.143 Papandrea B, Xu X, Xu Y, et al. Nano Research,2016,9(1),240.144 Peng H J, Xu W T, Zhu L, et al. Advanced Functional Materials,2016,26(35),6351.145 Song J, Yu Z, Gordin M L, et al. Nano Letters,2016,16(2),864.146 Song R, Fang R, Wen L, et al. Journal of Power Sources,2016,301,179.147 Sun L, Wang D, Luo Y, et al. ACS Nano,2015,10(1),1300.148 Wu F, Li J, Su Y, et al. Nano Letters,2016,16(9),5488.149 Zeng F, Jin Z, Yuan K, et al. Journal of Materials Chemistry A,2016,4(31),12319.150 Zhou W, Guo B, Gao H, et al. Advanced Energy Materials,2016,6(5),1502059.151 Zheng Z, Guo H, Pei F, et al. Advanced Functional Materials,2016,26(48),8952.152 Cao J, Chen C, Zhao Q, et al. Advanced Materials,2016,28,9629.153 Peng H J, Zhang Z W, Huang J Q, et al. Advanced Materials,2016,28(43),9551.154 Peng X X, Lu Y Q, Zhou L L, et al. Nano Energy,2017,32,503.155 Zheng M, Zhang S, Chen S, et al. Nano Research,2017,10(12),4305.156 Hong X, Jin J, Wu T, et al. Journal of Materials Chemistry A,2017,5(28),14775.157 Xiao D, Li Q, Zhang H, et al. Journal of Materials Chemistry A,2017,5(47),24901.158 Zeng S Z, Zeng X, Tu W, et al. Journal of Materials Chemistry A,2017,5(44),23209.159 Hu C, Kirk C, Cai Q, et al. Advanced Energy Materials,2017,7(22),1701082.160 Li Y, Fan J, Zhang J, et al. ACS Nano,2017,11(11),11417.161 Wang Y, Luo S, Wang D, et al. Electrochimica Acta,2018,284,400.
[1] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[2] 陈子冲, 方如意, 梁 初, 甘永平, 张文魁. 锂硫电池硫正极材料研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1401-1411.
[3] 郭雅芳, 肖剑荣, 侯永宣, 齐孟, 蒋爱华. 锂硫电池隔膜改性研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1073-1078.
[4] 王杰, 孙晓刚, 陈珑, 邱治文, 蔡满园, 李旭, 陈玮. 利用二硫苏糖醇夹层抑制锂硫电池的穿梭效应[J]. 《材料导报》期刊社, 2018, 32(7): 1079-1083.
[5] 宋晔, 缪远玲, 孟月东, 王奇. 利用等离子体技术制备和改性碳基纳米材料的研究进展[J]. 材料导报, 2018, 32(19): 3295-3303.
[6] 董奇志, 万汉生, 曾文霞, 余淑敏, 郭灿城, 余刚. 改性碳纳米材料在低温燃料电池中的应用*[J]. CLDB, 2017, 31(9): 81-89.
[7] 赵吉鑫,乔玉林. 液相脉冲激光轰击石墨制备碳纳米材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 32-37.
[8] 郑静, 陈琳, 张欢, 杨永珍, 刘旭光. 有序介孔碳纳米材料的合成及载药系统构建研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 151-157.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed