Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (21): 151-157    https://doi.org/10.11896/j.issn.1005-023X.2017.021.022
  多孔材料 |
有序介孔碳纳米材料的合成及载药系统构建研究进展*
郑静1, 2, 陈琳1, 3, 张欢1, 2, 杨永珍1, 3, 刘旭光1, 2
1 太原理工大学新材料界面科学与工程教育部重点实验室, 太原 030024;
2 太原理工大学化学化工学院;太原 030024;
3 太原理工大学新材料工程技术研究中心, 太原 030024
Research Progress in Ordered Mesoporous Carbon Nanomaterials: Synthesis and Construction of Drug Delivery Systems
ZHENG Jing1,2, CHEN Lin1,3, ZHANG Huan1,2, YANG Yongzhen1,3, LIU Xuguang1,2
1 Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education,Taiyuan University of Technology, Taiyuan 030024;
2 College of Chemistry and Chemical Engineering,Taiyuan University of Technology, Taiyuan 030024;
3 Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024
下载:  全 文 ( PDF ) ( 1759KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 有序介孔碳纳米材料(OMCNs)因具有高的比表面积、有序的介观结构和良好的生物相容性,在药物缓释方面应用广泛。介绍并对比分析了硬、软模板法合成OMCNs的相关研究,综述了基于OMCNs构建载药系统,尤其是具有响应性释药和靶向释药特性的载药系统的研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑静
陈琳
张欢
杨永珍
刘旭光
关键词:  有序介孔碳纳米材料  药物缓释  模板法  缓释机制    
Abstract: Ordered mesoporous carbon nanomaterials (OMCNs) have attracted great interest for the application in drug deli-very system owing to their high specific surface area, ordered mesoscopic structure and good biocompatibility. The syntheses of OMCNs by hard- and soft-template methods are introduced and comparatively analyzed in this paper. The drug delivery systems, especially systems with responsive release and targeted release, constructed based on OMCNs (and other functional components) are also reviewed.
Key words:  ordered mesoporous carbon nanomaterials    drug delivery    template method    release mechanism
               出版日期:  2017-11-10      发布日期:  2018-05-08
ZTFLH:  TB34  
基金资助: 国家自然科学基金(U1610255;U1607120); 山西省科技创新重点团队(2015013002-10;201605D131045-10);2017年山西省研究生教育创新项目(2017SY017)
通讯作者:  刘旭光,男,1965年生,教授,博士研究生导师,研究方向为碳纳米功能材料Tel:0351-6014138 E-mail:liuxuguang@tyut.edu.cn   
作者简介:  郑静:女,1992年生,硕士研究生,主要从事碳纳米功能材料研究 E-mail:zhengjing9288@163.com
引用本文:    
郑静, 陈琳, 张欢, 杨永珍, 刘旭光. 有序介孔碳纳米材料的合成及载药系统构建研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 151-157.
ZHENG Jing, CHEN Lin, ZHANG Huan, YANG Yongzhen, LIU Xuguang. Research Progress in Ordered Mesoporous Carbon Nanomaterials: Synthesis and Construction of Drug Delivery Systems. Materials Reports, 2017, 31(21): 151-157.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.021.022  或          http://www.mater-rep.com/CN/Y2017/V31/I21/151
1 Stewart B, Wild C P. World cancer report 2014[M]. Geneva,Swit-zerland:World Health Organization, International Agency for Research on Cancer, 2016.
2 Li C. A targeted approach to cancer imaging and therapy[J]. Nat Mater, 2014,13(2):110.
3 Huxford R C, Della Rocca J, Lin W B. Metal-organic frameworks as potential drug carriers[J]. Curr Opin Chem Biol, 2010,14(2):262.
4 Meek S T, Greathouse J A, Allendorf M D. Metal-organic frameworks: A rapidly growing class of versatile nanoporous materials[J]. Adv Mater, 2011,23(2):249.
5 Kortesuo P, Ahola M, Karlsson S, et al. Silicaxerogel as an implantable carrier for controlled drug delivery-evaluation of drug distribution and tissue effects after implantation[J]. Biomaterials, 2000,21(2):193.
6 Saha D, Warren K E, Naskar A K.Soft-templated mesoporous carbons as potential materials for oral drug delivery[J]. Carbon, 2014,71:47.
7 Zhao D, Wan Y, Zhou W. Ordered mesoporous materials[M]. Weinheim: John Wiley & Sons, 2012.
8 Liang C D, Li Z J, Dai S. Mesoporous carbon materials: Synthesis and modification[J]. Angew Chem Int Ed, 2008,47(20):3696.
9 Lu A H, Schmidt W, Matoussevitch N, et al. Nanoengineering of a magnetically separable hydrogenation catalyst[J]. Angew Chem, 2004,116(33):4403.
10Oh W K, Yoon H, Jang J. Size control of magnetic carbon nanoparticles for drug delivery[J]. Biomaterials, 2010,31(6):1342.
11Wang S B. Ordered mesoporous materials for drug delivery[J]. Microp Mesop Mater, 2009,117(1):1.
12Li W, Yue Q, Deng Y, et al. Ordered mesoporous materials based on interfacial assembly and engineering[J]. Adv Mater, 2013,25(37):5129.
13Lu A H, Schüth F. Nanocasting: A versatile strategy for creating nanostructured porous materials[J]. Adv Mater, 2006,18(14):1793.
14Lu Q, Xu J H, Hu S S. Studies on the direct electrochemistry of hemoglobin immobilized by yeast cells[J]. Chem Commun, 2006 (27): 2860.
15Yang H F, Zhao D Y. Synthesis of replica mesostructures by the nanocasting strategy[J]. J Mater Chem, 2005,15(12):1217.
16Wan Y, Shi Y F, Zhao D Y. Supramolecular aggregates as templates: Ordered mesoporous polymers and carbons[J]. Chem Mater, 2007,20(3):932.
17Ren N, Tang Y. Template-induced assembly of hierarchically ordered zeolite materials[J]. Petrochem Technol, 2005,34(5):405(in Chinese).
任楠, 唐颐. 多级有序沸石材料的模板法组装[J]. 石油化工, 2005,34(5):405.
18Wang X Q, Bozhilov K N, Feng P Y. Facile preparation of hierarchically porous carbon monoliths with well-ordered mesostructures[J]. Chem Mater, 2006,18(26):6373.
19Sui W B, Zheng J T, Yang Z, et al. A simple method of preparing ordered and three-dimensionally-interconnected macroporous carbon with mesoporosity by using silica template[J]. Mater Lett, 2011,65(15):2534.
20Zhou L, Li H Q, Yu C Z, et al. Easy synthesis and supercapacities of highly ordered mesoporous polyacenes/carbons[J]. Carbon, 2006,44(8):1601.
21Kosonen H, Valkama S, Nyknen A, et al. Functional porous structures based on the pyrolysis of cured templates of block copolymer and phenolic resin[J]. Adv Mater, 2006,18(2):201.
22Gierszal K P, Kim T W, Ryoo R, et al. Adsorption and structural properties of ordered mesoporous carbons synthesized by using va-rious carbon precursors and ordered siliceous P6mm and Ia3d mesostructures as templates[J]. J Phys Chem B, 2005,109(49):23263.
23Li W, Zhao D Y. An overview of the synthesis of ordered mesoporous materials[J]. Chem Commun, 2013,49(10):943.
24Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon mole-cular sieves via template-mediated structural transformation[J]. J Phys Chem B, 1999,103(37):7743.
25Kim W, Kang M Y, Joo J B, et al. Preparation of ordered mesoporous carbon nanopipes with controlled nitrogen species for application in electrical double-layer capacitors[J]. J Power Sources, 2010, 195(7): 2125.
26Kim T W, Chung P W, Slowing I I, et al. Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells[J]. Nano Lett, 2008, 8(11): 3724.
27Liang C D, Hong K, Guiochon G A, et al. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers[J]. Angew Chem Int Ed,2004, 43(43): 5785.
28Liang C D, Dai S. Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction[J]. J Am Chem Soc, 2006,128(16):5316.
29Wang X Q, Liang C D, Dai S. Facile synthesis of ordered mesoporous carbons with high thermal stability by self-assembly of resorcinol-formaldehyde and block copolymers under highly acidic conditions[J]. Langmuir, 2008,24(14):7500.
30Meng Y, Gu D, Zhang F Q, et al. Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation[J]. Angew Chem, 2005,117(43):7215.
31Meng Y, Zhang F Q, Gu D, et al. A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly[J]. Chem Mater, 2006, 18(18):4447.
32Huang Y, Cai H Q, Yu T, et al. Formation of mesoporous carbon with a face-centered-cubic fd3m structure and bimodal architectural pores from the reverse amphiphilic triblock copolymer PPO-PEO-PPO[J]. Angew Chem, 2007, 119(7): 1107.
33Huang Y, Cai H Q, Feng D, et al. One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities[J]. Chem Commun, 2008(23): 2641.
34Liu L, Yuan Z Y. Ordered mesoporous carbon materials synthesized by organic-organic self-assembly[J]. Prog Chem, 2014,26(5):756(in Chinese).
刘蕾, 袁忠勇. 软模板合成有序介孔碳材料[J]. 化学进展, 2014,26(5):756.
35Fang Y, Gu D, Zou Y, et al. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size[J]. Angew Chem Int Ed, 2010,49(43):7987.
36Meng Y, Wang S S, Li C Y, et al. Photothermal combined gene therapy achieved by polyethyleneimine-grafted oxidized mesoporous carbon nanospheres[J]. Biomaterials, 2016,100:134.
37Fang Y, Lv Y Y, Gong F, et al. Interface tension-induced synthesis of monodispersed mesoporous carbon hemispheres[J]. J Am Chem Soc, 2015, 137(8): 2808.
38Fang Y, Zheng G F, Yang J P, et al. Dual-pore mesoporous carbon@silica composite core-shell nanospheres for multidrug delivery[J]. Angew Chem, 2014,126(21):5470.
39刘玉荣. 介孔碳材料的合成及应用[M]. 北京:国防工业出版社, 2012:20.
40Chen Z X, Zheng B Y, Li X X, et al. Progress in the preparation of nanomaterials employing template method[J]. Chem Ind Eng Prog, 2010,29(1):94(in Chinese).
陈彰旭, 郑炳云, 李先学, 等. 模板法制备纳米材料研究进展[J]. 化工进展, 2010,29(1):94.
41Zhu X J, Wang S, Huang W Q, et al. Controllable synthesis of mesoporous carbon nanospheres with uniform size by a facile one-pot aqueous strategy under highly acidic conditions[J]. Carbon, 2016,105:521.
42Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery[J]. Nat Mater, 2013,12(11):991.
43Wang H, Yi J H, Mukherjee S, et al. Magnetic/NIR-thermally responsive hybrid nanogels for optical temperature sensing, tumor cell imaging and triggered drug release[J]. Nanoscale, 2014, 6(21): 13001.
44Zhu J, Liao L, Bian X J, et al. pH-controlled delivery of doxorubicin to cancer cells, based on small mesoporous carbon nanospheres[J]. Small, 2012, 8(17): 2715.
45Wang H, Li X G, Ma Z Q, et al. Hydrophilic mesoporous carbon nanospheres with high drug-loading efficiency for doxorubicin deli-very and cancer therapy[J]. Int J Nanomed, 2016,11:1793.
46Sánchez-Sánchez A, Suárez-García F, Martínez-Alonso A, et al. pH-responsive ordered mesoporous carbons for controlled ibuprofen release[J]. Carbon, 2015,94:152.
47Saha D, Spurri A, Chen J H, et al. Controlled release of alend-ronate from nitrogen-doped mesoporous carbon[J]. Microp Mesop Mater, 2016,229:8.
48Huang X, Wu S S, Du X Z. Gated mesoporous carbon nanoparticles as drug delivery system for stimuli-responsive controlled release[J]. Carbon, 2016,101:135.
49Hirokawa Y, Tanaka T. Volume phase transition in a nonionic gel[J]. J Chem Phys, 1984,81(12):6379.
50Li Longfei. Temperature and magnetic dual responsive surface molecularly imprinted polymers: The recognition mechanism and sustainedly release towards 5-fluorouracil [D].Taiyuan: Taiyuan University of Technology, 2016(in Chinese).
李龙飞. 温敏型磁性表面分子印迹聚合物识别5-氟尿嘧啶的机理及其缓释行为[D]. 太原: 太原理工大学, 2016.
51Zhu S M, Chen C X, Chen Z X, et al. Thermo-responsive polymer-functionalized mesoporous carbon for controlled drug release[J]. Mater Chem Phys, 2011, 126(1): 357.
52Wang B, Mo Z L, Zhang C, et al. Synthesis of magnetic ordered mesoporous carbons and its application as a drug carrier[J]. Mater Rev:Rev, 2014,28(1):46(in Chinese).
王博, 莫尊理, 张春, 等. 磁性有序介孔碳的合成与药物载体应用[J]. 材料导报:综述篇, 2014,28(1):46.
53Yuan X, Xing W, Zhuo S P, et al. Preparation and application of mesoporous Fe/carbon composites as a drug carrier[J]. Microp Mesop Mater, 2009, 117(3): 678.
54Kapri S, Maiti S, Bhattacharyya S. Lemon grass derived porous carbon nanospheres functionalized for controlled and targeted drug delivery[J]. Carbon, 2016,100:223.
55Zhou L, Dong K, Chen Z W, et al. Near-infrared absorbing mesoporous carbon nanoparticle as an intelligent drug carrier for dual-triggered synergistic cancer therapy[J]. Carbon, 2015,82:479.
56Wan L, Jiao J, Cui Y, et al. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpres-sing cancer cells[J]. Nanotechnology, 2016,27(13):135102.
57Xu G J, Liu S J, Niu H, et al. Functionalized mesoporous carbon nanoparticles for targeted chemo-photothermal therapy of cancer cells under near-infrared irradiation[J]. RSC Adv, 2014, 4(64): 33986.
[1] 吕斌, 程坤, 高党鸽, 马建中. 中空结构纳米TiO2微球的可控制备[J]. 材料导报, 2019, 33(5): 770-776.
[2] 高保东, 钟红荣, 吴婷芳, 谭翠, 张岩, 徐水. 丝素/海藻酸钠膜韧性的优化及膜释药机理分析[J]. 《材料导报》期刊社, 2018, 32(7): 1197-1201.
[3] 张丽娜, 苏琪, 杨高玲, 刘柏雄, 杨斌. WO3基纳米材料的可控合成及其功能化应用*[J]. 《材料导报》期刊社, 2017, 31(11): 20-28.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed