Research Progress in Ordered Mesoporous Carbon Nanomaterials: Synthesis and Construction of Drug Delivery Systems
ZHENG Jing1,2, CHEN Lin1,3, ZHANG Huan1,2, YANG Yongzhen1,3, LIU Xuguang1,2
1 Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education,Taiyuan University of Technology, Taiyuan 030024; 2 College of Chemistry and Chemical Engineering,Taiyuan University of Technology, Taiyuan 030024; 3 Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024
Abstract: Ordered mesoporous carbon nanomaterials (OMCNs) have attracted great interest for the application in drug deli-very system owing to their high specific surface area, ordered mesoscopic structure and good biocompatibility. The syntheses of OMCNs by hard- and soft-template methods are introduced and comparatively analyzed in this paper. The drug delivery systems, especially systems with responsive release and targeted release, constructed based on OMCNs (and other functional components) are also reviewed.
郑静, 陈琳, 张欢, 杨永珍, 刘旭光. 有序介孔碳纳米材料的合成及载药系统构建研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 151-157.
ZHENG Jing, CHEN Lin, ZHANG Huan, YANG Yongzhen, LIU Xuguang. Research Progress in Ordered Mesoporous Carbon Nanomaterials: Synthesis and Construction of Drug Delivery Systems. Materials Reports, 2017, 31(21): 151-157.
1 Stewart B, Wild C P. World cancer report 2014[M]. Geneva,Swit-zerland:World Health Organization, International Agency for Research on Cancer, 2016. 2 Li C. A targeted approach to cancer imaging and therapy[J]. Nat Mater, 2014,13(2):110. 3 Huxford R C, Della Rocca J, Lin W B. Metal-organic frameworks as potential drug carriers[J]. Curr Opin Chem Biol, 2010,14(2):262. 4 Meek S T, Greathouse J A, Allendorf M D. Metal-organic frameworks: A rapidly growing class of versatile nanoporous materials[J]. Adv Mater, 2011,23(2):249. 5 Kortesuo P, Ahola M, Karlsson S, et al. Silicaxerogel as an implantable carrier for controlled drug delivery-evaluation of drug distribution and tissue effects after implantation[J]. Biomaterials, 2000,21(2):193. 6 Saha D, Warren K E, Naskar A K.Soft-templated mesoporous carbons as potential materials for oral drug delivery[J]. Carbon, 2014,71:47. 7 Zhao D, Wan Y, Zhou W. Ordered mesoporous materials[M]. Weinheim: John Wiley & Sons, 2012. 8 Liang C D, Li Z J, Dai S. Mesoporous carbon materials: Synthesis and modification[J]. Angew Chem Int Ed, 2008,47(20):3696. 9 Lu A H, Schmidt W, Matoussevitch N, et al. Nanoengineering of a magnetically separable hydrogenation catalyst[J]. Angew Chem, 2004,116(33):4403. 10Oh W K, Yoon H, Jang J. Size control of magnetic carbon nanoparticles for drug delivery[J]. Biomaterials, 2010,31(6):1342. 11Wang S B. Ordered mesoporous materials for drug delivery[J]. Microp Mesop Mater, 2009,117(1):1. 12Li W, Yue Q, Deng Y, et al. Ordered mesoporous materials based on interfacial assembly and engineering[J]. Adv Mater, 2013,25(37):5129. 13Lu A H, Schüth F. Nanocasting: A versatile strategy for creating nanostructured porous materials[J]. Adv Mater, 2006,18(14):1793. 14Lu Q, Xu J H, Hu S S. Studies on the direct electrochemistry of hemoglobin immobilized by yeast cells[J]. Chem Commun, 2006 (27): 2860. 15Yang H F, Zhao D Y. Synthesis of replica mesostructures by the nanocasting strategy[J]. J Mater Chem, 2005,15(12):1217. 16Wan Y, Shi Y F, Zhao D Y. Supramolecular aggregates as templates: Ordered mesoporous polymers and carbons[J]. Chem Mater, 2007,20(3):932. 17Ren N, Tang Y. Template-induced assembly of hierarchically ordered zeolite materials[J]. Petrochem Technol, 2005,34(5):405(in Chinese). 任楠, 唐颐. 多级有序沸石材料的模板法组装[J]. 石油化工, 2005,34(5):405. 18Wang X Q, Bozhilov K N, Feng P Y. Facile preparation of hierarchically porous carbon monoliths with well-ordered mesostructures[J]. Chem Mater, 2006,18(26):6373. 19Sui W B, Zheng J T, Yang Z, et al. A simple method of preparing ordered and three-dimensionally-interconnected macroporous carbon with mesoporosity by using silica template[J]. Mater Lett, 2011,65(15):2534. 20Zhou L, Li H Q, Yu C Z, et al. Easy synthesis and supercapacities of highly ordered mesoporous polyacenes/carbons[J]. Carbon, 2006,44(8):1601. 21Kosonen H, Valkama S, Nyknen A, et al. Functional porous structures based on the pyrolysis of cured templates of block copolymer and phenolic resin[J]. Adv Mater, 2006,18(2):201. 22Gierszal K P, Kim T W, Ryoo R, et al. Adsorption and structural properties of ordered mesoporous carbons synthesized by using va-rious carbon precursors and ordered siliceous P6mm and Ia3d mesostructures as templates[J]. J Phys Chem B, 2005,109(49):23263. 23Li W, Zhao D Y. An overview of the synthesis of ordered mesoporous materials[J]. Chem Commun, 2013,49(10):943. 24Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon mole-cular sieves via template-mediated structural transformation[J]. J Phys Chem B, 1999,103(37):7743. 25Kim W, Kang M Y, Joo J B, et al. Preparation of ordered mesoporous carbon nanopipes with controlled nitrogen species for application in electrical double-layer capacitors[J]. J Power Sources, 2010, 195(7): 2125. 26Kim T W, Chung P W, Slowing I I, et al. Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells[J]. Nano Lett, 2008, 8(11): 3724. 27Liang C D, Hong K, Guiochon G A, et al. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers[J]. Angew Chem Int Ed,2004, 43(43): 5785. 28Liang C D, Dai S. Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction[J]. J Am Chem Soc, 2006,128(16):5316. 29Wang X Q, Liang C D, Dai S. Facile synthesis of ordered mesoporous carbons with high thermal stability by self-assembly of resorcinol-formaldehyde and block copolymers under highly acidic conditions[J]. Langmuir, 2008,24(14):7500. 30Meng Y, Gu D, Zhang F Q, et al. Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation[J]. Angew Chem, 2005,117(43):7215. 31Meng Y, Zhang F Q, Gu D, et al. A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly[J]. Chem Mater, 2006, 18(18):4447. 32Huang Y, Cai H Q, Yu T, et al. Formation of mesoporous carbon with a face-centered-cubic fd3m structure and bimodal architectural pores from the reverse amphiphilic triblock copolymer PPO-PEO-PPO[J]. Angew Chem, 2007, 119(7): 1107. 33Huang Y, Cai H Q, Feng D, et al. One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities[J]. Chem Commun, 2008(23): 2641. 34Liu L, Yuan Z Y. Ordered mesoporous carbon materials synthesized by organic-organic self-assembly[J]. Prog Chem, 2014,26(5):756(in Chinese). 刘蕾, 袁忠勇. 软模板合成有序介孔碳材料[J]. 化学进展, 2014,26(5):756. 35Fang Y, Gu D, Zou Y, et al. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size[J]. Angew Chem Int Ed, 2010,49(43):7987. 36Meng Y, Wang S S, Li C Y, et al. Photothermal combined gene therapy achieved by polyethyleneimine-grafted oxidized mesoporous carbon nanospheres[J]. Biomaterials, 2016,100:134. 37Fang Y, Lv Y Y, Gong F, et al. Interface tension-induced synthesis of monodispersed mesoporous carbon hemispheres[J]. J Am Chem Soc, 2015, 137(8): 2808. 38Fang Y, Zheng G F, Yang J P, et al. Dual-pore mesoporous carbon@silica composite core-shell nanospheres for multidrug delivery[J]. Angew Chem, 2014,126(21):5470. 39刘玉荣. 介孔碳材料的合成及应用[M]. 北京:国防工业出版社, 2012:20. 40Chen Z X, Zheng B Y, Li X X, et al. Progress in the preparation of nanomaterials employing template method[J]. Chem Ind Eng Prog, 2010,29(1):94(in Chinese). 陈彰旭, 郑炳云, 李先学, 等. 模板法制备纳米材料研究进展[J]. 化工进展, 2010,29(1):94. 41Zhu X J, Wang S, Huang W Q, et al. Controllable synthesis of mesoporous carbon nanospheres with uniform size by a facile one-pot aqueous strategy under highly acidic conditions[J]. Carbon, 2016,105:521. 42Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery[J]. Nat Mater, 2013,12(11):991. 43Wang H, Yi J H, Mukherjee S, et al. Magnetic/NIR-thermally responsive hybrid nanogels for optical temperature sensing, tumor cell imaging and triggered drug release[J]. Nanoscale, 2014, 6(21): 13001. 44Zhu J, Liao L, Bian X J, et al. pH-controlled delivery of doxorubicin to cancer cells, based on small mesoporous carbon nanospheres[J]. Small, 2012, 8(17): 2715. 45Wang H, Li X G, Ma Z Q, et al. Hydrophilic mesoporous carbon nanospheres with high drug-loading efficiency for doxorubicin deli-very and cancer therapy[J]. Int J Nanomed, 2016,11:1793. 46Sánchez-Sánchez A, Suárez-García F, Martínez-Alonso A, et al. pH-responsive ordered mesoporous carbons for controlled ibuprofen release[J]. Carbon, 2015,94:152. 47Saha D, Spurri A, Chen J H, et al. Controlled release of alend-ronate from nitrogen-doped mesoporous carbon[J]. Microp Mesop Mater, 2016,229:8. 48Huang X, Wu S S, Du X Z. Gated mesoporous carbon nanoparticles as drug delivery system for stimuli-responsive controlled release[J]. Carbon, 2016,101:135. 49Hirokawa Y, Tanaka T. Volume phase transition in a nonionic gel[J]. J Chem Phys, 1984,81(12):6379. 50Li Longfei. Temperature and magnetic dual responsive surface molecularly imprinted polymers: The recognition mechanism and sustainedly release towards 5-fluorouracil [D].Taiyuan: Taiyuan University of Technology, 2016(in Chinese). 李龙飞. 温敏型磁性表面分子印迹聚合物识别5-氟尿嘧啶的机理及其缓释行为[D]. 太原: 太原理工大学, 2016. 51Zhu S M, Chen C X, Chen Z X, et al. Thermo-responsive polymer-functionalized mesoporous carbon for controlled drug release[J]. Mater Chem Phys, 2011, 126(1): 357. 52Wang B, Mo Z L, Zhang C, et al. Synthesis of magnetic ordered mesoporous carbons and its application as a drug carrier[J]. Mater Rev:Rev, 2014,28(1):46(in Chinese). 王博, 莫尊理, 张春, 等. 磁性有序介孔碳的合成与药物载体应用[J]. 材料导报:综述篇, 2014,28(1):46. 53Yuan X, Xing W, Zhuo S P, et al. Preparation and application of mesoporous Fe/carbon composites as a drug carrier[J]. Microp Mesop Mater, 2009, 117(3): 678. 54Kapri S, Maiti S, Bhattacharyya S. Lemon grass derived porous carbon nanospheres functionalized for controlled and targeted drug delivery[J]. Carbon, 2016,100:223. 55Zhou L, Dong K, Chen Z W, et al. Near-infrared absorbing mesoporous carbon nanoparticle as an intelligent drug carrier for dual-triggered synergistic cancer therapy[J]. Carbon, 2015,82:479. 56Wan L, Jiao J, Cui Y, et al. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpres-sing cancer cells[J]. Nanotechnology, 2016,27(13):135102. 57Xu G J, Liu S J, Niu H, et al. Functionalized mesoporous carbon nanoparticles for targeted chemo-photothermal therapy of cancer cells under near-infrared irradiation[J]. RSC Adv, 2014, 4(64): 33986.