Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (7): 1197-1201    https://doi.org/10.11896/j.issn.1005-023X.2018.07.023
  生物医用材料 |
丝素/海藻酸钠膜韧性的优化及膜释药机理分析
高保东, 钟红荣, 吴婷芳, 谭翠, 张岩, 徐水
西南大学生物技术学院,重庆 400715
Optimizing the Toughness of Silk Fibroin/Sodium Alginate Membrane and Analyzing the Drug Release Mechanism from the Membrane
GAO Baodong, ZHONG Hongrong, WU Tingfang, TAN Cui, ZHANG Yan, XU Shui
College of Biotechnology, Southwest University, Chongqing 400715
下载:  全 文 ( PDF ) ( 1533KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 首先在丝素(SF)溶液中添加既定浓度的海藻酸钠(SA)溶液和一定体积的75%甘油、50%戊二醛以及模型药物罗丹明B(4 g/L),将均匀混合液以浇铸方法制备丝素/海藻酸钠(SF/SA)膜模型药物缓释敷料;然后利用响应曲面法筛选最佳韧性(以断裂伸长率表示)SF/SA膜的制备参数;最后对优化膜的韧性和药物释放动力学模型进行检验与分析。实验得出,在浓度为2.5%的丝素溶液中,添加等体积0.96%浓度的海藻酸钠溶液,且甘油和戊二醛添加量分别为膜液总体积1.41%和4.47%时达到最优制备条件,此时膜的断裂伸长率为228.36%。检验结果显示相对对照组,优化组的断裂伸长率扩大了18.14倍;根据回归方程计算得出影响断裂伸长率的主效因素是甘油,且其与戊二醛具有显著协同作用。另外,根据优化组的释药结果分析表明:该体系具有药物缓释功效,释药动力学归属于Fickan模型。以上结果有利于丝素/海藻酸钠膜舒适型药物缓释敷料的制备,可为该生物材料的应用研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高保东
钟红荣
吴婷芳
谭翠
张岩
徐水
关键词:  丝素  海藻酸钠  响应曲面法  药物缓释  断裂伸长率    
Abstract: Firstly, sodium alginate (SA) solutions with predetermined concentrations, and certain volume of 75% glycerol, 50% glutaraldehyde and model drug rhodamine B (4 g/L), were added into silk fibroin (SF) solution to form a series of homoge-neous mixtures which were used to prepare sustained-releasing silk fibroin/sodium alginate (SF/SA) membranes by casting method. Secondly, the preparation parameters were optimized via the response surface methodology aiming at achieving the highest product toughness (characterized as elongation at break). Lastly, the optimized SF/SA membrane’s toughness and the drug release kinetic model were tested and analyzed. We figured out the optimum preparation conditions for SF/SA membrane as: adding 0.96% (concentration) sodium alginate solution into an equal volume of 2.5% (concentration) silk fibroin solution, and setting the volume fractions of glycerol and glutaraldehyde to the whole mixture at 1.41% and 4.47%, respectively. And these optimized parameters could lead to a SF/SA membrane with an elongation at break of 228.36%, which was 18.14 times higher than that of the control group. The calculation result via regression equation suggested that the main factor affecting the elongation at break was glycerol dosage, and it had a significant synergistic effect with glutaraldehyde dosage. The drug release analysis confirmed the sustained-releasing cha-racter of the optimized group along with a pharmacokinetics coinciding with the Fickan model. The above results are favorable to the preparation of silk fibroin/sodium alginate membrane as the comfort and sustained-releasing dressing, which can provide reference for biomaterials application.
Key words:  silk fibroin    sodium alginate    response surface    sustained-release    elongation at break
出版日期:  2018-04-10      发布日期:  2018-05-11
ZTFLH:  TQ341.5  
基金资助: 重庆市蚕丝纤维新材料工程技术研究中心专项研究(SILKGCZX009);江苏高校省级重点实验室开放研究课题(KJS1508)
通讯作者:  徐水:通信作者,女,副教授,主要从事纤维功能材料研究 E-mail:xushui@swu.edu.cn   
作者简介:  高保东:男,1990年生,硕士研究生,主要从事茧丝化学研究 E-mail:dongbbyy@163.com
引用本文:    
高保东, 钟红荣, 吴婷芳, 谭翠, 张岩, 徐水. 丝素/海藻酸钠膜韧性的优化及膜释药机理分析[J]. 《材料导报》期刊社, 2018, 32(7): 1197-1201.
GAO Baodong, ZHONG Hongrong, WU Tingfang, TAN Cui, ZHANG Yan, XU Shui. Optimizing the Toughness of Silk Fibroin/Sodium Alginate Membrane and Analyzing the Drug Release Mechanism from the Membrane. Materials Reports, 2018, 32(7): 1197-1201.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.07.023  或          https://www.mater-rep.com/CN/Y2018/V32/I7/1197
1 Kim S H, Nam Y S, LEE T S, et al. Silk fibroin nanofiber. Electrospinning, properties, and structure[J].Polymer Journal,2003,35:185.
2 向仲怀. 蚕丝生物学[M].第2版.北京:中国林业出版社,2005.
3 Gao X, Zhang H P, Chen Y, et al. Application of silk fibroin porous material in tissue engineering[J].Journal of Textile Research,2008,29(10):132(in Chinese).
高欣,张海萍,陈宇,等.丝素蛋白多孔材料及其在组织工程的应用[J].纺织学报,2008,29(10):132.
4 Gao B D, Zhang Y, Tang W C, et al. Research progress of wound dressing based on silk fibroin[J].Journal of Textile Research,2016,37(7):162(in Chinese).
高保东,张岩,唐文超,等.丝素基伤口敷料研究进展[J].纺织学报,2016,37(7):162.
5 Thomas A, Harding K G, Moore K. Alginates from wound dres-sings activate human macrophages to secrete tumour necrosis factor-α[J].Biomaterials,2000,21(17):1797.
6 Chan A W, Whitney R A, Neufeld R J. Kinetic controlled synthesis of pH-responsive network alginate[J].Biomacromolecules,2008,9(9):2536.
7 Miranda O J, Srinivasan G. Advanced trends in treatment of wounds[J].Current Science,2016,111(4):641.
8 Heenan A. Frequently asked questions: Alginate dressings[EB/OL].http:∥www.Worldwidewide.Com/1998/june/Alginate.
9 Walker M, Hobot J A, Newman G R, et al. Scanning electron microscopic examination of bacterial immobilisation in a carboxymethyl cellulose (AQUACEL®) and alginate dressings[J].Biomaterials,2003,24(5):883.
10Roh D H, Kang S Y, Kim J Y, et al. Wound healing effect of silk fibroin/alginate-blended sponge in full thickness skin defect of rat[J].Journal of Materials Science-Materials in Medicine,2006,17(6):547.
11Ye Y, Zhang J Y, Huang L Q. Effect of glycerin and glutaraldehyde on the improvement of fibroin membrane[J].Science of Sericulture,2006,32(2):231(in Chinese).
叶勇,张剑韵,黄龙全.甘油和戊二醛对丝素膜性能的改良效果[J].蚕业科学,2006,32(2):231.
12Chen J L, Huang C, Xu Y H. Preparation of silk fibroin-sodium alginate-glycerol blend films and its properties[J].Journal of Anhui Agricultural University,2013,40(2):321(in Chinese).
陈佳林,黄晨,许云辉.丝素-海藻酸钠-甘油共混膜的制备及性能研究[J].安徽农业大学学报,2013,40(2):321.
13 Montgomery D C. Design and analysis of experiments[J].Journal of the American Statistical Association,2005,81(16):308.
14 Xu S, Zhang H J, Li W J, et al. Preparation and property deter mination of fibroin in/nano-SiO2 gel blend membrane[J].Science of Sericulture,2011,37(1):82(in Chinese).
徐水,张胡静,李雯静,等.丝素/纳米SiO2凝胶共混膜的制备及性能测试[J].蚕业科学,2011,37(1):82.
15 Wei Q N, Ma L, Huang A M, et al. Conrtolled drug release from silk fibroin films treated with methanol-water mixtures[J].Acta Chimica Sinica,2012,70(6):714(in Chinese).
韦俏娜,马林,黄爱民,等.甲醇-水混合溶剂后处理制备丝素蛋白膜及其药物释放研究[J].化学学报,2012,70(6):714.
16 Han L L, Zhang Y Z, Yin G B. Structure and controlled release of medicine microcapsule wrapped with fibroin-alginate[J].Fine Chemicals,2004,21(7):521(in Chinese).
韩龙龙,张幼珠,尹桂波.再生丝素蛋白/海藻酸盐包药微胶囊的结构与释药性能[J].精细化工,2004,21(7):521.
17 Chen Y Z, Zhang J X, Lu Z F, et al. Study on factors involved in vitro of terbutaline sulphate pulsatile controlled-release pellets[J].China Pharmacist,2004,7(10):750(in Chinese).
陈燕忠,张纪兴,吕竹芬,等.特布他林脉冲控释微丸体外释放度影响因素的研究[J].中国药师,2004,7(10):750.
[1] 楚佳杰, 韩冰源, 李仁兴, 高祥涵, 丛孟启, 吴海东, 徐文文, 杜伟. 基于响应曲面法的等离子喷涂Ni60CuMo涂层质量优化[J]. 材料导报, 2024, 38(3): 22040338-6.
[2] 刘向阳, 王议, 夏爽, 刘中清. 镍铁双氢氧化物的响应曲面法优化生长和电催化析氧性能研究[J]. 材料导报, 2024, 38(16): 23040152-5.
[3] 杜姗, 魏云航, 谭宇浩, 周金利, 杨红英, 周伟涛. 蚕丝基柔性可穿戴传感器在人体健康监测中的研究进展[J]. 材料导报, 2024, 38(12): 22100190-11.
[4] 周梅, 白金婷, 郭凌志, 张玉琢. 基于响应曲面法的煤矸石地聚物注浆材料配比优化[J]. 材料导报, 2023, 37(20): 22020068-9.
[5] 罗晓宇, 冯曰海, 赵鑫, 刘思余. 镁合金摆动多道增材层成形特征参数与尺寸控制规律研究[J]. 材料导报, 2023, 37(18): 22040093-7.
[6] 马慧, 方月, 吴一楠, 李风亭. UiO-66(Zr)/海藻酸钠复合材料的制备优化及净化水中As(V)的性能研究[J]. 材料导报, 2022, 36(20): 22050004-7.
[7] 宗丹, 盛扬, 李新庆, 潘艳, 孙一新, 邓林红, Mark Bradley, 张嵘. 以聚醚聚酯丙烯酸酯为交联剂的pH响应性水凝胶纳米微球的制备及药物释放研究[J]. 材料导报, 2022, 36(14): 21020090-7.
[8] 李子晗, 赵超, 王闻宇, 金欣, 牛家嵘, 朱正涛, 林童. 蛋白质压电材料的研究进展[J]. 材料导报, 2022, 36(11): 20080182-8.
[9] 张钰禄, 胡谦, 叶倩, 吴佳喜, 李秋实, 苏柑锚, 杜官本, 徐开蒙. 甲壳素/丝素蛋白复合薄膜结晶特性变化研究[J]. 材料导报, 2022, 36(11): 20100142-6.
[10] 徐川, 严观福生, 孔令庆, 欧阳新华, 林乃波, 刘向阳. 基于丝素蛋白与纳米银线的柔性透明导电膜及其光电应用[J]. 材料导报, 2021, 35(2): 2064-2068.
[11] 徐梦婷, 马艳, 刘祖兰, 陈磊, 代方银, 李智. 后处理对静电纺丝素纤维膜性能的影响[J]. 材料导报, 2021, 35(14): 14180-14184.
[12] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[13] 拜凤姣, 王卉, 陈晓敏, 吴晨星, 张克勤. 丝素蛋白基纺织材料及其在生物医学领域的应用[J]. 材料导报, 2020, 34(7): 7154-7160.
[14] 石敏, 陶思洁, 李丹, 王鑫, 徐水, 朱勇. 面向组织工程应用的再生丝素/海藻酸钙海绵:制备、表征及体内、体外性能研究[J]. 材料导报, 2020, 34(4): 4158-4165.
[15] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed