Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22070192-6    https://doi.org/10.11896/cldb.22070192
  金属与金属基复合材料 |
深冷挤出切削制备超细晶7075铝合金的组织、性能及时效行为研究
殷晓龙*, 王志林, 王婉, 于贺春, 王汉斌, 闫文杰
中原工学院机电学院,郑州 450007
Research on Microstructure, Mechanical Properties and Ageing Behaviors of Ultra-fine Grained 7075 Aluminum Alloy Fabricated by Cryogenic Temperature Extrusion Machining
YIN Xiaolong*, WANG Zhilin, WANG Wan, YU Hechun, WANG Hanbin, YAN Wenjie
School of Mechatronics Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
下载:  全 文 ( PDF ) ( 25147KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 传统的大变形工艺制备超细晶材料时不可避免地会产生大量的热,削弱材料的力学性能。深冷挤出切削(CT-EM)作为一种新型的超细晶材料制备工艺,可消除切削热,抑制动态回复,达到提升材料强度与可加工性的目的。本工作以7075铝合金为研究对象,对比分析了常温挤出切削(RT-EM)与CT-EM超细晶切屑的微观组织、物相演变、力学性能以及时效行为。结果表明:切屑的晶粒尺寸被极大程度地细化,CT-EM切屑的平均晶粒尺寸更小,位错密度更大,硬度和强度更高。经时效处理后,切屑组织内出现了大量弥散析出相,RT-EM与CT-EM切屑的屈服强度分别进一步提升至455 MPa和507 MPa,细晶强化、位错强化及析出相强化共同发挥作用;深冷处理可增强组织内二次相的析出动力,CT-EM切屑更快地达到峰值硬度,且其延伸率有小幅提升,拉伸断口内出现更多的韧窝。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
殷晓龙
王志林
王婉
于贺春
王汉斌
闫文杰
关键词:  深冷挤出切削  7075铝合金  超细晶  力学性能  时效处理    
Abstract: Traditional severe plastic method inevitably produces large amounts of heat, which weakens the mechanical properties of materials. Cryogenic temperature extrusion machining (CT-EM), as a new ultra-fine grained materials fabrication process, can eliminate cutting heat, suppress dynamic recovery, and improve materials strength and machinability. In this study, the microstructure, phase evolution, mechanical properties and aging behavior of ultra-fine grain 7075 aluminum alloy chips fabricated by RT-EM and CT-EM were analyzed. The results show that the average grain size of CT-EM chips is highly refined, the dislocation density is higher, and the hardness and strength are further improved. After aging treatment, a large number of dispersed precipitates appeared in the chip, the yield strength of RT-EM and CT-EM chips increased to 455 MPa and 507 MPa respectively. The grain strengthening, dislocation strengthening and precipitate strengthening work together. Cryogenic temperature treatment can enhance the precipitate kinetics of secondary phase in the microstructure, so that the CT-EM chips reach peak hardness faster. Additionally, the elongation of peak aged CT-EM sample is slightly improved, and more dimples are present in the tensile fracture.
Key words:  cryogenic temperature extrusion machining    Al 7075 alloy    ultra-fine grained    mechanical property    aging treatment
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  TG146.2+1  
基金资助: 国家自然科学基金(52105499);河南省科技攻关计划项目(222102220052);河南省高等学校重点科研项目(23A460008);中原工学院基本科研业务费专项资金项目(K2022YY001)
通讯作者:  * 殷晓龙,中原工学院机电学院讲师、硕士研究生导师。2020年6月毕业于华南理工大学机械工程专业,获工学博士学位。目前主要从事现代切削理论、金属塑性成形以及机械加工数值模拟技术等方面的研究工作。发表SCI/EI论文10余篇,包括Materials Science & Engineering A、Journal of Materials Research、《机械工程学报》等。yinxl@zut.edu.cn   
引用本文:    
殷晓龙, 王志林, 王婉, 于贺春, 王汉斌, 闫文杰. 深冷挤出切削制备超细晶7075铝合金的组织、性能及时效行为研究[J]. 材料导报, 2023, 37(22): 22070192-6.
YIN Xiaolong, WANG Zhilin, WANG Wan, YU Hechun, WANG Hanbin, YAN Wenjie. Research on Microstructure, Mechanical Properties and Ageing Behaviors of Ultra-fine Grained 7075 Aluminum Alloy Fabricated by Cryogenic Temperature Extrusion Machining. Materials Reports, 2023, 37(22): 22070192-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070192  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22070192
1 Xiao W C, Wang B Y, Wu Y. Materials Science and Engineering A, 2018, 712, 704.
2 Kumar N, Jayaganthan R, Brokmeier H. Transactions of Nonferrous Metals Society of China, 2017, 27(3), 475.
3 Kotadia H R, Gibbons G, Das A, et al. Additive Manufacturing, 2021, 46, 102155.
4 Vu V Q, Beygelzimer Y, Kulagin R, et al. Materials Characterization, 2018, 138, 208.
5 Das P, Jayaganthan R, Singh I V. Materials & Design, 2011, 3(32), 1298.
6 Wu Y, Wen T, Zhu Z T. Materials Reports, 2012, 26(15), 114 (in Chinese).
吴颖, 温彤, 朱曾涛. 材料导报, 2012, 26(15), 114.
7 Yin X L, Pi Y Y, He D, et al. Journal of Materials Research, 2018, 33(20), 3449.
8 Fritsch S, Scholze M, Wagner M F X. Materialwissenschaft Und Werkstofftechnik, 2012, 43(7), 561.
9 Zhang S, Luo X, Zheng G Y, et al. Materials Science and Engineering A, 2022, 832, 142482.
10 Hou L G, Liu M L, Wang X D. Acta Metallurgical Sinica, 2017, 53(9), 1075 (in Chinese).
侯陇刚, 刘明荔, 王新东, 等. 金属学报, 2017, 53(9), 1075.
11 Krishna K G, Sivaprasad K, Venkateswarlu K, et al. Materials Science and Engineering A, 2012, 535, 129.
12 Li C, Xiong H Q, Bhatt L. Transactions of Nonferrous Metals Society of China, 2020, 11(30), 2904.
13 Krymskiy S, Sitdikov O, Avtokratova E. Transactions of Nonferrous Metals Society of China, 2020, 1(30), 14.
14 Valiev R Z. Journal of Materials Science, 2007, 42, 1483.
15 Saldana C, Yang P, Mann J B, et al. Materials Science and Engineering A, 2009, 503(1), 172.
16 Azushima A, Kopp R, Korhonen A, et al. The International Academy for Production Engineering Annals, 2008, 57(2), 716.
17 Yin Xiaolong, Deng Wenjun, Zhang Jiayang, et al. Journal of South China University of Technology (Natural Science Edition), 2019, 47 (5), 89 (in Chinese).
殷晓龙, 邓文君, 张嘉阳, 等. 华南理工大学学报(自然科学版), 2019, 47(5), 89.
18 Zhao Y H, Liao X Z, Jin Z, et al. Acta Materialia, 2004, 52(15), 4589.
19 Ayer R, Koo J Y, Steeds J W, et al. Metallurgical Transactions A, 1985, 16, 1925.
20 Panigrahi S K, Jayaganthan R. Journal of Alloys & Compounds, 2011, 509(40), 9609.
21 Hu T, Ma K, Topping T D, et al. Acta Materialia, 2013, 6(61), 2163.
22 Shaeri M H, Salehi M T, Seyyedein S H, et al. Materials & Design, 2014, 57, 250.
23 Myriam Nicolas, Alexis Deschamps. Acta Materialia, 2003, 2(51), 6077.
24 Zhao Y H, Liao X Z, Cheng S, et al. Advanced Materials, 2006, 18, 2280.
25 Zhang B B, Yan F K, Zhao M J, et al. Acta Materialia, 2018, 151, 310.
26 Rokni M R, Widener C A, Champagne V K, et al. Surface and Coatings Technology, 2015, 276, 305.
27 Zhao Y H, Liao X Z, Zhu Y T, et al. Journal of Materials Research, 2005, 20(2), 288.
28 Das P, Jayaganthan R, Chowdhury T, et al. Materials Science & Engineering. A, 2011, 528(24), 7124.
29 Wang C, Xu Y B, Han E H. Acta Metallurgica Sinica, 2006, 42(2), 191 (in Chinese).
王聪, 徐永波, 韩恩厚. 金属学报, 2006, 42(2), 191.
30 Rao P N, Singh D, Brokmeier H G, et al. Materials Science & Engineering. A, 2015, 641, 391.
31 Panigrahi S K, Jayaganthan R. Materials & Design, 2011, 32(6), 3150.
[1] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[2] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[3] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[4] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[5] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[6] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[7] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[8] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[9] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[10] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[11] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[12] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[13] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[14] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[15] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed