Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22070044-7    https://doi.org/10.11896/cldb.22070044
  高分子与聚合物基复合材料 |
环氧树脂/DOPS衍生物复合材料的阻燃性能及热降解行为
许松江, 许志彦, 侯泽明, 宝冬梅*, 周国永, 邹光龙
贵州民族大学化学工程学院,贵阳 550025
Flame Retardant and Thermal Degradation Behaviors of Epoxy Resin/DOPS Derivative Composites
XU Songjiang, XU Zhiyan, HOU Zeming, BAO Dongmei*, ZHOU Guoyong, ZOU Guanglong
School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China
下载:  全 文 ( PDF ) ( 26819KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚合物材料的阻燃性能与其热降解行为密切相关,研究热降解行为对理解其阻燃机理具有重要意义。在分析环氧树脂/DOPS衍生物(EP/MAH-DOPS)的阻燃性能和热稳定性的基础上,研究其热降解行为,并分析其残炭形貌,最后探讨其阻燃机理。实验结果表明:当阻燃剂含量为7.5%(质量分数)时,EP/MAH-DOPS的极限氧指数(LOI)值为29.3%,达到UL-94 V-0级,与纯EP相比,其热释放速率峰值(PHRR)和总热释放量(THR)分别降低了43.83%和7.43%;其初始分解温度(T5%,333.81 ℃)低于纯EP(376.84 ℃),600 ℃的残炭量提高到22.12%。MAH-DOPS的加入促进了EP提前分解和成炭,从而进一步降低了EP的活化能。热重-红外(TG-FTIR)联用分析结果表明,阻燃剂MAH-DOPS主要通过热解产生磷氧自由基实现气相阻燃。扫描电子显微镜(SEM)结果表明,EP/MAH-DOPS能够形成更加完整、致密的炭层。从阻燃机理看,阻燃剂MAH-DOPS通过自由基猝灭和成炭分别在气相和凝聚相发挥阻燃作用,但以气相阻燃为主。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许松江
许志彦
侯泽明
宝冬梅
周国永
邹光龙
关键词:  MAH-DOPS  环氧树脂  阻燃性能  热降解行为  阻燃机理    
Abstract: The flame retardant of polymer materials greatly depends on their thermal degradation behaviors and research on the thermal degradation kinetics has a critical role in revealing the flame retardant mechanism. Based on the analysis of the flame retardant and thermal stability of epoxy resin DOPS derivative (EP/MAH-DOPS), the thermal degradation behavior was studied, the morphology of the char residue was analyzed, and the flame retardant mechanism was finally discussed. The results showed that when the amount of flame retardant was 7.5wt%, the limiting oxygen index (LOI) value of EP/MAH-DOPS increased to 29.3%, and reached UL-94 V-0 rating. Compared with pure EP, the peak heat release rate (PHRR) and total heat release (THR) of EP/MAH-DOPS-7.5% were decreased by 43.83% and 7.43%, respectively. The initial decomposition temperature of EP/MAH-DOPS-7.5% (T5%, 333.81 ℃) was lower than that of pure EP (376.84 ℃), and the amount of char residue increased to 22.12% at 600 ℃. The addition of MAH-DOPS promoted the EP to decompose in advance and the char forming of EP, which further reduced the activation energy of EP. The results of thermogravimetric-fourier transform infrared spectroscopy (TG-FTIR) showed that the flame retardant MAH-DOPS mainly play a flame retardant role in gas phase through the generation of phosphorus oxygen radicals during pyrolysis. The results of scanning electron microscopy (SEM) showed that EP/MAH-DOPS could form a more complete and dense char layer. From the flame retardant mechanism, MAH-DOPS plays a flame retardant role in the gas phase and condensed phase through quenching free radicals and char formation respectively, and the gas phase flame retardant mechanism is the main one.
Key words:  MAH-DOPS    epoxy resin    flame retardant    thermal degradation behavior    flame retardant mechanism
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  TB34  
  TB332  
基金资助: 国家自然科学基金(51863004;52163001);贵州省省级科技计划项目([2020]1Y211;ZK[2022]216;CXTD[2021]005);贵州民族大学高分子复合材料工程研究中心(GZMUGCZX[2021]-01)
通讯作者:  * 宝冬梅,贵州民族大学化学工程学院教授、硕士研究生导师。2003年6月于辽宁师范大学化学与化工学院获得学士学位,2007年6月于贵州师范大学理学院获得硕士学位,同年7月到贵州民族大学任教至今,2013年6月于北京理工大学材料学院获得博士学位。目前主要从事聚合物基阻燃复合材料方面的研究工作。在Materials Letters、Chemical Physics Letters、Journal of Physics and Chemistry of Solids、《复合材料学报》等国内外期刊上发表论文30余篇。dongtian1314521@163.com   
作者简介:  许松江,2021年7月毕业于郑州工商学院,获得工学学士学位。现为贵州民族大学化学工程学院材料与化工专业硕士研究生,师从宝冬梅教授,目前主要研究领域为磷系阻燃材料。
引用本文:    
许松江, 许志彦, 侯泽明, 宝冬梅, 周国永, 邹光龙. 环氧树脂/DOPS衍生物复合材料的阻燃性能及热降解行为[J]. 材料导报, 2023, 37(22): 22070044-7.
XU Songjiang, XU Zhiyan, HOU Zeming, BAO Dongmei, ZHOU Guoyong, ZOU Guanglong. Flame Retardant and Thermal Degradation Behaviors of Epoxy Resin/DOPS Derivative Composites. Materials Reports, 2023, 37(22): 22070044-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070044  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22070044
1 Xu Z G, Song P A, Zhang J, et al. Composites Science and Technology, 2018, 168, 363.
2 Qian L J, Ye L J, Qiu Y, et al. Polymer, 2011, 52(24), 5486.
3 Wang Y Z, Yuan Y C, Zhao Y, et al. High Performance Polymers, 2017, 29(1), 94.
4 Liu W, Chen K P, Zhao X L. Journal of Chongqing Technology and Business University(Natural Science Edition), 2022, 39(3), 1(in Chinese).
刘文, 陈可平, 赵秀丽. 重庆工商大学学报(自然科学版), 2022, 39(3), 1.
5 Jin S L, Qian L J, Qiu Y, et al. Polymer Degradation and Stability, 2019, 166, 344.
6 Wang P, Cai Z S. Polymer Degradation and Stability, 2017, 137, 138.
7 Zhang S, Jiang Y C, Sun Y Y, et al. Polymers for Advanced Technologies, 2021, 32(5), 2093.
8 Zhang Q Q, Yang S, Wang J, et al. Polymer Degradation and Stability, 2019, 167, 10.
9 Luo J Y, Zhang D H, Zhou M, et al. Chemical Industry and Engineering Progress, 2020, 39(8), 3221(in Chinese).
罗继永, 张道海, 周密, 等. 化工进展, 2020, 39(8), 3221.
10 Liu P, Liu M, Gao C, et al. Journal of Applied Polymer Science, 2013, 130(2), 1301.
11 Wang Y, Luo Y, Zhang Z. Insulating Materials, 2010, 43(3), 20(in Chinese).
王昱, 罗炎, 张桢. 绝缘材料, 2010, 43(3), 20.
12 Wang J H, Xu Z Y, Ye X L, et al. Fine Chemicals, 2022, 39(2), 396 (in Chinese).
王建航, 许志彦, 叶小林, 等. 精细化工, 2022, 39(2), 396.
13 Xu Z Y, Hou Z M, Ye X L, et al. Acta Materiae Compositae Sinica, 2022, 39(10), 4518(in Chinese).
许志彦, 侯泽明, 叶小林, 等. 复合材料学报, 2022, 39(10), 4518.
14 He W T, Long Y H, Xu H H. Journal of Huanggang Normal University, 2020, 40(6), 67 (in Chinese).
何文涛, 龙雨宏, 徐花卉. 黄冈师范学院学报, 2020, 40(6), 67.
15 Wang J H, Xu Z Y, Zhang Y P, et al. Journal of Functional Materials, 2020, 51(11), 11152 (in Chinese).
王建航, 许志彦, 张玉鹏, 等. 功能材料, 2020, 51(11), 11152.
16 Standardization Administration of the People's Republic of China. Plastics—Determination of burning behaviour by oxygen index—Part 1: Guidance: GB/T 2406. 1-2008, China Standards Press, China, 2008 (in Chinese).
中国国家标准化管理委员会. 塑料用氧指数法测定燃烧行为第1部分:导则:GB/T 2406. 1-2008, 中国标准出版社, 2008.
17 Standardization Administration of the People's Republic of China. Plastics—Determination of burning characteristics: Horizontal and vertical test: GB/T2408-2008, China Standards Press, China, 2008 (in Chinese).
中国国家标准化管理委员会. 塑料燃烧性能的测定:水平法和垂直法:GB/T2408-2008, 中国标准出版社, 2008.
18 International Organization for Standardization. Reaction-to-fire tests-Heat release, smoke production and mass loss rate—Part 1:Heat release rate(cone calorimeter method): ISO5660-1-2002. International, 2002.
19 Ni Z, Wang Y H, Luo H W, et al. Chemistry and Adhesion, 2021, 43(1), 1(in Chinese).
倪卓, 王英浩, 罗汉伟, 等. 化学与粘合, 2021, 43(1), 1.
20 Ye X L, Xu Z Y, Hou Z M, et al. Materials Reports, 2022, 36(19), 222(in Chinese).
叶小林, 许志彦, 侯泽明, 等. 材料导报, 2022, 36(19), 222.
21 Zhang W C. The research on the mechanism and application of blowing-out flame retarded epoxy resins. Ph. D. Thesis, Beijing Institute of Technology, China, 2013 (in Chinese).
张文超. 吹熄阻燃环氧树脂机理及应用研究. 博士学位论文, 北京理工大学, 2013.
22 Chen S M. Synthesis of flame retardant based on phosphaphenanthrene and its application in epoxy resin. Master's Thesis, Guizhou Normal University, China, 2018 (in Chinese).
陈仕梅. 磷杂菲类阻燃剂的合成及在环氧树脂中的应用. 硕士学位论文, 贵州师范大学, 2018.
23 Liu Q Y, Liu C B, Peng X L. Plastics Science and Technology, 2021, 49(8), 39 (in Chinese).
刘全义, 刘传邦, 彭孝亮. 塑料科技, 2021, 49(8), 39.
24 Fan J J, Min Y, Yang J, et al. Materials Reports, 2021, 35(10), 10189 (in Chinese).
范娟娟, 闵样, 杨吉, 等. 材料导报, 2021, 35(10), 10189.
25 Lu Y Z, Geng H C, Shen J R, et al. Acta Materiae Compositae Sinica, 2023, 40(4), 2119(in Chinese).
陆亦洲, 耿海春, 沈金荣, 等.复合材料学报, 2023, 40(4), 2119.
26 You G Y, Cheng Z Q, Peng H, et al. Journal of Applied Polymer Science, 2015, 132(16), 1.
27 Zhang Q Q, Wang J, Yang S, et al. Composites Part B:Engineering, 2019, 177, 107380.
28 Peng X L, Li Z K, Wang D H, et al. Chemical Engineering Journal,2021, 424, 130404.
29 Tan Y, Shao Z B, Yu L X, et al. Polymer Chemistry, 2016, 7(17), 3003.
30 Carja L D, Serbezeanu D, Vladbubulac T, et al. Journal of Materials Chemistry A, 2014, 2(38), 16230.
[1] 鲁玉鑫, 卢林刚. 聚磷酸铵-单宁酸-三聚氰胺/环氧树脂复合材料的阻燃及力学性能[J]. 材料导报, 2023, 37(9): 21090236-8.
[2] 张进, 谭璐, 邢宝岩, 李作鹏, 赵建国, 屈文山, 张璐. 环氧导电胶的反应动力学及其应用[J]. 材料导报, 2023, 37(8): 22020025-6.
[3] 杨薛明, 胡宗杰, 王炜晨, 刘强, 王帅. 利用蔗糖改性氮化硼提高环氧树脂复合材料的导热性能[J]. 材料导报, 2023, 37(2): 21110039-6.
[4] 傅豪, 王朝辉, 刘鲁清, 刘伟, 余四新. 路用水性环氧改性乳化沥青组成优化及耐久性能评价[J]. 材料导报, 2023, 37(18): 22010074-9.
[5] 颜睿, 沃虓野, 王豫, 黄健, 张齐贤. 石墨烯改性导热复合材料研究进展[J]. 材料导报, 2023, 37(15): 21110075-14.
[6] 叶姣凤, 王飞, 张钧翔, 左洋, 冯利邦, 罗晓晓. 热可逆聚氨酯改性自修复环氧树脂的力学性能和自修复行为[J]. 材料导报, 2023, 37(14): 22010044-6.
[7] 黄志雄, 胡新军, 田建平, 陈满骄, 马小燕, 江雪莲, 唐诗应. 芳基磷酸酯盐改性石墨烯/水性环氧涂层的耐腐蚀性能研究[J]. 材料导报, 2023, 37(13): 21110138-7.
[8] 胡帅帅, 许智鹏, 雷子萱, 陈双, 刘育红, 强军锋. 脂环族环氧-丙烯酸酯混杂光固化树脂的设计及性能研究[J]. 材料导报, 2023, 37(11): 21090171-8.
[9] 宋承哲, 张冠华, 屈丰来, 冯良勇. 热塑性聚氨酯改性环氧树脂的制备与微观特性表征[J]. 材料导报, 2023, 37(10): 21060009-7.
[10] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[11] 易昌鸿, 胡钢, 祝柏林, 陈红祥, 吴隽, 顾华志. 淬火法制备热固化环氧树脂基聚合物分散液晶膜及其调光性能的优化[J]. 材料导报, 2022, 36(8): 21010229-8.
[12] 何兆益, 谭洋伟, 李家琪, 张权, 吴逸飞. 埃洛石纳米管协效阻燃改性沥青性能及机理研究[J]. 材料导报, 2022, 36(2): 20110080-8.
[13] 叶小林, 许志彦, 侯泽明, 王建航, 谭芳, 张道海, 蔡晓东, 周国永, 吴中立, 宝冬梅. 聚乳酸/DOPS衍生物阻燃复合材料的非等温热降解动力学研究[J]. 材料导报, 2022, 36(19): 21090131-6.
[14] 陈春悦, 徐春萍, 张永航, 龚维, 班大明. 磷杂菲添加型阻燃剂对乙烯基酯树脂改性探究[J]. 材料导报, 2022, 36(15): 21040246-5.
[15] 吉静茹, 许智鹏, 强军锋, 刘育红. 有机硅改性环氧树脂薄膜封装材料的制备及性能研究[J]. 材料导报, 2022, 36(11): 20120032-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed