Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 21090131-6    https://doi.org/10.11896/cldb.21090131
  高分子与聚合物基复合材料 |
聚乳酸/DOPS衍生物阻燃复合材料的非等温热降解动力学研究
叶小林, 许志彦, 侯泽明, 王建航, 谭芳, 张道海, 蔡晓东, 周国永, 吴中立, 宝冬梅
贵州民族大学化学工程学院,贵阳 550025
Non-isothermal Thermal Degradation Kinetics of Polylactic Acid/DOPS Derivatives Flame Retardant Composites
YE Xiaolin, XU Zhiyan, HOU Zeming, WANG Jianhang, TAN Fang, ZHANG Daohai, CAI Xiaodong, ZHOU Guoyong, WU Zhongli, BAO Dongmei
School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China
下载:  全 文 ( PDF ) ( 3881KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,磷杂菲类阻燃剂因其良好的阻燃性和相容性等特点而被阻燃界学者们广泛研究。本工作以一种新型磷杂菲衍生物马来酸酐-9,10-二氢-9-氧杂-10-磷杂菲-10-硫化物(MAH-DOPS)为阻燃剂,将其添加到聚乳酸(PLA)中制备PLA/MAH-DOPS阻燃复合材料;再通过TG/DTG方法研究其热降解过程;最后采用Kissinger法、Flynn-Wall-Ozawa法和Coats-Redfern法对PLA和PLA/MAH-DOPS的非等温热降解动力学数据进行分析,求出热降解活化能(E)和指前因子(A),并推测出可能的热降解机理及其动力学方程。实验结果表明:与纯PLA相比,PLA/MAH-DOPS的初始分解温度(T5%)、最大热失重速率(Rmax)和峰温(TP)均降低,残炭量升高。热降解动力学参数分别为EK(PLA)=174.02 kJ/mol,EO(PLA)=178.45 kJ/mol,lnAK(PLA)=31.90,EK(PLA/MAH-DOPS)=124.93 kJ/mol,EO(PLA/MAH-DOPS)=126.37 kJ/mol,lnAK(PLA/MAH-DOPS)= 24.43;PLA和PLA/MAH-DOPS的热降解机理函数均为g(α)=[-ln(1-α)]3/4,反应级数n=3/4,热降解机理属于随机成核和随后生长反应。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶小林
许志彦
侯泽明
王建航
谭芳
张道海
蔡晓东
周国永
吴中立
宝冬梅
关键词:  磷杂菲衍生物  MAH-DOPS  聚乳酸  热降解动力学    
Abstract: In recent years, phosphaphenanthrene-based flame retardants have been extensively studied due to their good compatibility and flame retardancy. In this work, PLA/MAH-DOPS flame retardant composites were prepared by adding maleic anhydride-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-sulfide (MAH-DOPS) as flame retardant into polylactic acid (PLA), then the thermal degradation process was studied by TG/DTG method, finally the thermal degradation kinetic parameters, including the activation energy (E) and pre-exponential factor (A), the thermal degradation kinetic mechanism function and reaction order were calculated by Kissinger method, Flynn-Wall-Ozawa method and Coats-Redfern method. The results indicate that compared with pure PLA, the initial decomposition temperature(T5%), maximum thermal weight loss rate (Rmax) and peak temperature (TP) of PLA/MAH-DOPS are all decreased, while the carbon residue rate is increased. The thermal degradation kinetic parameters are EK(PLA)=174.02 kJ/mol, EO(PLA)=178.45 kJ/mol, lnAK(PLA)=31.90, EK(PLA/MAH-DOPS) =124.93 kJ/mol, EO(PLA/MAH-DOPS)=126.37 kJ/mol and lnAK(PLA/MAH-DOPS)=24.43. The mechanism functions of the thermal degradation of PLA and PLA/MAH-DOPS are both g(α)=[-ln(1-α)]3/4, with the reaction order n=3/4, and the thermal degradation mechanism is random nucleation and its subsequent growth.
Key words:  phosphaphenanthrene derivatives    MAH-DOPS    polylactic acid    thermal degradation kinetic
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  O631  
基金资助: 国家自然科学基金(51863004);贵州省省级科技计划项目(黔科合基础〔2020〕1Y211; 黔科合基础-ZK〔2021〕一般248);贵州省2018年度高层次创新型人才培养-千层次人才项目
通讯作者:  dongtian1314521@163.com   
作者简介:  叶小林,2019年7月毕业于贵州民族大学,获得理学学士学位。现为贵州民族大学化学工程学院硕士研究生,师从宝冬梅教授,目前主要研究领域为磷系阻燃材料。
宝冬梅,贵州民族大学化学工程学院教授。2003年于辽宁师范大学化学化工学院获得学士学位,2007年于贵州师范大学理学院获得硕士学位,同年到贵州民族大学任教至今,2013年于北京理工大学材料学院获得博士学位。目前主要从事聚合物基阻燃复合材料的研究。在Materials Letters、Chemical Physics Letters、Journal of Physics and Chemistry of Solids和《复合材料学报》等国内外期刊上发表论文30余篇。
引用本文:    
叶小林, 许志彦, 侯泽明, 王建航, 谭芳, 张道海, 蔡晓东, 周国永, 吴中立, 宝冬梅. 聚乳酸/DOPS衍生物阻燃复合材料的非等温热降解动力学研究[J]. 材料导报, 2022, 36(19): 21090131-6.
YE Xiaolin, XU Zhiyan, HOU Zeming, WANG Jianhang, TAN Fang, ZHANG Daohai, CAI Xiaodong, ZHOU Guoyong, WU Zhongli, BAO Dongmei. Non-isothermal Thermal Degradation Kinetics of Polylactic Acid/DOPS Derivatives Flame Retardant Composites. Materials Reports, 2022, 36(19): 21090131-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090131  或          http://www.mater-rep.com/CN/Y2022/V36/I19/21090131
1 Yu S L, Xiang H X, Zhou J L, et al. Progress in Natural Science:Mate-rials International, 2018,28(5), 590.
2 Lin Z N, Gou X M, He Z P, et al. Polymer Engineering & Science, 2021, 61(1), 201.
3 Yang Y F, Wang X G, Fei B, et al. Polymers for Advanced Technologies, 2021, 32(8), 3039.
4 Xu L F, Wu X D, Li L S, et al. Polymers for Advanced Technologies, 2019,30(6),1375.
5 Long L J, Chang Q F, He W T, et al. Polymer Degradation and Stability, 2017, 139, 55.
6 Wang L Q, Li L Y, Liang J, et al. Journal of Safety and Environment, 2021,21(3),1040 (in Chinese).
王丽琼, 李立影, 梁洁, 等. 安全与环境学报, 2021, 21(3), 1040.
7 Wang J H, Xu Z Y, Zhang Y P, et al. Journal of Functional Materials, 2020, 51(11), 11152 (in Chinese).
王建航, 许志彦, 张玉鹏, 等. 功能材料, 2020, 51(11), 11152.
8 Chen S M, Lai F, Li P, et al. Acta Polymerica Sinica, 2017(8), 1358 (in Chinese).
陈仕梅, 来方, 李霈, 等. 高分子学报, 2017(8), 1358.
9 Wei K, Zhang D H, Qin S H, et al. Polymer Materials Science & Engineering, 2019,35(5), 184 (in Chinese).
魏柯, 张道海, 秦舒浩, 等. 高分子材料科学与工程, 2019, 35(5), 184.
10 Zhou Y, Zhang D H, Qin S H. Materials Reports A:Review Papers, 2019, 33(3), 901 (in Chinese).
周颖, 张道海, 秦舒浩. 材料导报:综述篇, 2019, 33(3), 901.
11 Liu P, Liu M M, Gao C, et al. Journal of Applied Polymer Science, 2013, 130(2), 1301.
12 Luo J Y, Zhang D H, Zhou M, et al. Chemical Industry and Engineering Progress, 2020,39(8), 3221 (in Chinese).
罗继永, 张道海, 周密, 等. 化工进展, 2020, 39(8), 3221.
13 Zhao W. Synthesis of phosphorus-containing polymeric flame retardant and its flame retardant mechanism on epoxy resins. Ph.D. Thesis, Beijing Institute of Technology, China, 2016 (in Chinese).
赵伟. 聚合型磷基阻燃剂合成及对环氧树脂的阻燃机理研究. 博士学位论文,北京理工大学, 2016.
14 Lu L G, Zhang Q, Xu X N, et al. Polymer Materials Science & Enginee-ring, 2010,26(11), 39 (in Chinese).
卢林刚, 张晴, 徐晓楠, 等. 高分子材料科学与工程, 2010, 26(11), 39.
15 Kuang J Z, Liu P F, Luo D F, et al. Materials Reports B:Research Papers, 2018, 32(7), 2376 (in Chinese).
匡敬忠, 刘鹏飞, 罗大芳, 等.材料导报:研究篇, 2018, 32(7), 2376.
16 Ren Y, Cheng B, Zhang J, et al. Frontiers of Chemistry in China, 2009, 4(2), 136.
17 Li S T, Zhu Z H, Wen C, et al. China Plastics, 2016, 30(5), 13 (in Chinese).
李沈婷, 朱志华, 文超, 等.中国塑料, 2016, 30(5), 13.
18 Ding M H. Study on heat resistance and decomposition kinetics of nitrile rubber. Master's Thesis, Qingdao University of Science and Technology, China, 2019 (in Chinese).
丁明辉. 丁腈橡胶耐热性和分解动力学研究. 硕士学位论文, 青岛科技大学, 2019.
19 Lu L G, Han Z K, Yang S S, et al. Journal of Molecular Science, 2010, 26(4), 261 (in Chinese).
卢林刚, 韩中凯, 杨守生, 等. 分子科学学报, 2010, 26(4), 261.
20 Ren Y L, Wang Y L, Wang L J, et al. Construction and Building Mate-rials, 2015,76,273.
21 He W T, Long Y H, Xu H H. Journal of Huanggang Normal University, 2020, 40(6), 67(in Chinese).
何文涛, 龙雨宏, 徐花卉. 黄冈师范学院学报, 2020, 40(6), 67.
22 Bao D M, Fang L, Wen Z, et al. Journal of Functional Materials, 2018, 49(11), 11089 (in Chinese).
宝冬梅, 方丽, 文竹, 等.功能材料, 2018, 49(11), 11089.
23 Ren Y L, Cheng B W, Xu L, et al. Acta Chimica Sinica, 2009, 67(18), 2127 (in Chinese).
任元林, 程博闻, 徐玲, 等.化学学报, 2009, 67(18), 2127.
[1] 刘济民, 朱慧敏, 潘健, 宋力雅, 刘珊, 花亚冰, 石锐, 徐亮. 新型可生物降解的组织可黏附材料的合成与表征[J]. 材料导报, 2022, 36(3): 20120176-6.
[2] 段瑞侠, 陈金周, 刘文涛, 何素琴, 刘浩, 黄淼铭, 朱诚身. 聚乳酸基压电材料的研究和应用[J]. 材料导报, 2022, 36(10): 20080234-8.
[3] 毛龙, 谢建达, 雷永振, 范淑红, 刘跃军. 贻贝仿生构建聚乳酸多层复合薄膜及其性能[J]. 材料导报, 2021, 35(16): 16178-16183.
[4] 黄爱宾, 刘彩凤, 张晓惠. 聚乳酸共混的研究进展[J]. 材料导报, 2020, 34(Z2): 586-589.
[5] 陈康, 何啸宇, 李文豪, 吴义强, 李新功, 左迎峰. 乳酸接枝竹纤维/聚乳酸复合材料的制备与性能表征[J]. 材料导报, 2020, 34(20): 20171-20176.
[6] 赵中国, 张鑫, 程少华, 王渺, 梁攀旭, 李万顺, 贾仕奎. 高熔体强度聚乳酸的结晶和发泡性能[J]. 材料导报, 2020, 34(20): 20182-20186.
[7] 王珊珊, 赵磊, 周海瑛, 李文珠, 张文标. 次磷酸铝对竹炭/聚乳酸复合材料阻燃和力学性能的影响[J]. 材料导报, 2020, 34(14): 14214-14217.
[8] 师盟盟, 罗发亮. PLLA/TPEE/TMC-210三元复合材料的制备及性能研究[J]. 材料导报, 2020, 34(12): 12191-12195.
[9] 赵西坡, 胡欢, 熊娟, 王鑫, 余晓磊, 彭少贤. 弹性体共混改性聚乳酸(PLA)高韧性共混物研究进展[J]. 材料导报, 2019, 33(Z2): 590-598.
[10] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[11] 王博成, 刘桅, 涂征, 吴崇刚, 石彪, 胡涛, 龚兴厚. 苯乙烯-丙烯酸甲酯共聚物对聚乳酸/SBS共混物相容性的影响[J]. 材料导报, 2019, 33(22): 3833-3836.
[12] 余鹏, 项佩, 高金玲, 李媛. 基于相形态结构的PLA/PBS共混物微孔发泡行为[J]. 材料导报, 2019, 33(20): 3524-3530.
[13] 常悦, 陈支泽, 杨一奇. 聚乳酸-聚己内酯多嵌段立构复合物薄膜的制备及熔融稳定性[J]. 材料导报, 2019, 33(16): 2808-2812.
[14] 彭少贤,蔡小琳,胡欢,赵西坡. 环境友好型增塑剂增韧聚乳酸的最新研究进展[J]. 材料导报, 2019, 33(15): 2617-2623.
[15] 王鑫, 石敏, 余晓磊, 彭少贤, 赵西坡. 聚己二酸对苯二甲酸丁二酯(PBAT)共混改性聚乳酸(PLA)高性能全生物降解复合材料研究进展[J]. 材料导报, 2019, 33(11): 1897-1909.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed