Please wait a minute...
材料导报  2022, Vol. 36 Issue (10): 20080234-8    https://doi.org/10.11896/cldb.20080234
  高分子与聚合物基复合材料 |
聚乳酸基压电材料的研究和应用
段瑞侠, 陈金周, 刘文涛*, 何素琴, 刘浩, 黄淼铭, 朱诚身
郑州大学材料科学与工程学院,郑州 450001
Research and Application of Polylactic Acid-based Piezoelectric Materials
DUAN Ruixia, CHEN Jinzhou, LIU Wentao*, HE Suqin, LIU Hao, HUANG Miaoming, ZHU Chengshen
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 7325KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着全社会对环保的重视特别是限塑令的实施,生物可降解材料深受大众欢迎,其中典型代表为聚乳酸,其被广泛应用于包装和医药等一次性领域。现阶段对聚乳酸的研究主要集中在改善其韧性,将其应用于包装等低端市场,与其高价位不相符。但在充分利用聚乳酸质软、加工条件温和、生物相容性好等优点的基础上,通过特殊工艺过程赋予其剪切压电性,有望进一步提高聚乳酸的附加值,将其应用于柔性传感器件、微机电系统、可穿戴设备等智能领域。
   常规未经处理的聚乳酸中C=O偶极子方向是随机分布的,没有压电性能,只有经过特殊处理使偶极子垂直于分子链方向平行排列时,才可能产生剪切压电性。压电聚乳酸的应用形式主要为薄膜和纤维膜,实现压电性的常用方法有加热拉伸、静电纺丝、模板浸润等。现阶段研究制备的压电聚乳酸的压电常数普遍较小,与其结晶度和分子链的取向度有关。通过提高聚乳酸的结晶度和取向度,可得到剪切压电性能优良的材料。本文主要介绍聚乳酸压电性的产生机理、提高压电性的方法和聚乳酸基材料压电性在传感器、驱动器、发电机、电子皮肤等方面的应用进展,最后展望可降解聚乳酸的高附加值应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
段瑞侠
陈金周
刘文涛
何素琴
刘浩
黄淼铭
朱诚身
关键词:  聚乳酸  压电性  静电纺丝  传感器  可穿戴设备    
Abstract: As the whole society attaches great importance to environmental protection, especially the implementation of the plastic ban, biodegradable materials are welcomed by the public. Among them, the typical represent is polylactic acid (PLA), which is widely used in the disposable fields, such as packaging and medicine field. At present, researches on PLA mainly focus on improving its toughness and applications in the lo-wend market like packaging,so its applications are not consistent with its present high price. However, on the basis of advantages such as soft property, mild process, and biocompatibility, PLA has shear piezoelectric property by some special processes. It is expected to improve the additional value of PLA, and PLA can be used in intelligent fields, such as flexible sensors, MEMs systems and wearable devices.
Conventional untreated PLA has random C=O dipole directions, so it has no piezoelectric property. But shear piezoelectric property is possible produced if PLA is specially treated to make the dipoles parallel to the direction of the molecular chain. The application forms of piezoelectric PLA product are mainly thin film and fiber film. The common methods to realize piezoelectric property include heating and drawing, electrospinning, template infiltration, etc. At present, the piezoelectric constant of PLA research is small, which is related to its crystallinity and orientation of molecular chain. The material with excellent shear piezoelectric properties can be obtained by improving the crystallinity and orientation of PLA. This article mainly introduces the generation mechanism of the piezoelectric property of PLA, the methods to improve the piezoelectric property and the application progress of piezoelectric property of PLA in sensors, actuators, generators, electronic skin, etc. Finally the high value-added application of this degraded polylactic acid are prospected.
Key words:  polylactic acid    piezoelectric    electrospinning    sensor    wearable device
发布日期:  2022-05-24
ZTFLH:  TB324  
  TB34  
基金资助: 国家重点基础研究发展计划项目(2018YFD0400702)
通讯作者:  wtliu@zzu.edu.cn   
作者简介:  段瑞侠,2003年6月、2006年4月于天津科技大学获得工学学士学位和硕士学位,硕士毕业后到郑州大学工作至今。现为郑州大学材料科学与工程学院博士研究生,在朱诚身教授和刘文涛教授的指导下进行研究。目前主要研究领域为功能高分子材料。
刘文涛,郑州大学材料科学与工程学院教授、博士研究生导师。2005年博士毕业于中国科学院固体物理研究所凝聚态物理专业,博士毕业后到郑州大学工作至今。目前主要研究方向为生物医用天然高分子材料、功能高分子材料和新型智能包装材料。发表论文180余篇,包括Polymer,ACS Applied Materials & Interfaces,Nanotechnology,Cellulose, Journal of Macromolecular Science Part B: Physics等。
引用本文:    
段瑞侠, 陈金周, 刘文涛, 何素琴, 刘浩, 黄淼铭, 朱诚身. 聚乳酸基压电材料的研究和应用[J]. 材料导报, 2022, 36(10): 20080234-8.
DUAN Ruixia, CHEN Jinzhou, LIU Wentao, HE Suqin, LIU Hao, HUANG Miaoming, ZHU Chengshen. Research and Application of Polylactic Acid-based Piezoelectric Materials. Materials Reports, 2022, 36(10): 20080234-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080234  或          http://www.mater-rep.com/CN/Y2022/V36/I10/20080234
1 Rajabi H A, Jaffe M, Arinzeh T L. Acta Biomaterials, 2015, 24, 12.
2 Vasile C, Rap M, Stefan M, et al. Express Polymer Letters, 2017, 11 (7), 531.
3 Li Y, Chen W, Lu L. ACS Applied Bio Materials, 2021, 4(1), 122.
4 Champa J A, Snehasish G,Scheinbeim J I, et al. Biosensors and Bioelectronics, 2003, 18 (4),381.
5 Fukada E. IEEE Transactions on Electrical Insulation, 1992, 27 (4),813.
6 Chorsi M T, Curry E J,Chorsi H T, et al. Advanced Materials, 2019, 31(1), e1802084.
7 Fukada E. Ferroelectrics, 2011, 60 (1),285.
8 Ramadan K S, Sameoto D, Evoy S. Smart Materials and Structures, 2014, 23 (3),033001.
9 Yoshiro T. Japanese Journal of Applied Physics, 2016, 55 (4S),04EA07.
10 Kim T H. Characterization and applications of piezoelectric polymers. Master's Thesis, University of California at Berkeley, USA, 2015.
11 Wei H, Wang H, Xia Y, et al. Journal of Materials Chemistry C, 2018,6(46), 12446.
12 Ertug B. American Journal of Engineering Research (AJER), 2013, 2 (8),1.
13 Kang Y P, An C S, Hung H C, et al. Nano Energy, 2020, 75,104879.
14 Wu W, Wang L, Li Y, et al. Nature, 2014, 514 (7523),470.
15 Li J F, Li L, Zhang X, et al. National Science Review, 2020, 7 (2),355.
16 Liu H, Wu H, Ong K P, et al. Science, 2020, 369,292.
17 Zhu P, Chen Y, Shi J. Advance Material, 2020, 32 (29),e2001976.
18 Le A T, Ahmadipour M, Pung S Y. Journal of Alloys and Compounds, 2020, 844,156172.
19 Kazuhiro T, Shota S, Yu A, et al. Japanese Journal of Applied Physics, 2015, 54 (10S),10nf02.
20 Li J, Long Y, Yang F, et al. Current Opinion in Solid State & Materials Science, 2020, 24,100806.
21 Yuan H, Han P, Tao K, et al. AAAS Research (Wash D C), DOI: 10.34133/2019/9025939.
22 Ji H S, Yun S J. Nanomaterials (Basel), 2018, 8 (4),206.
23 Surmenev R A, Orlova T, Chernozem R V, et al. Nano Energy, 2019, 62,475.
24 Yoshiro T. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22 (3),1355.
25 Xin Y, Xu Y, Guo C, et al. Piezoelectrics & Acoustoopticezo, 2018, 40 (2),283(in Chinese).
辛毅, 徐洋, 郭超, 等. 压电与声光, 2018, 40 (2),283.
26 Ueda H,Carr S H. Polymer Journal, 1984, 16 (9),661.
27 Wang W, Zheng Y, Jin X, et al. Nano Energy, 2019, 56,588.
28 Fukada E. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13 (5),1110.
29 Hanninen A, Sarlin E, Lyyra I, et al. Carbohydrate Polymers, 2018, 202,418.
30 Hänninen A, Rajala S, Salpavaara T, et al. Procedia Engineering, 2016, 168,1176.
31 Csoka L, Hoeger I C, Rojas O J, et al. ACS Macro Letters, 2012, 1 (7),867.
32 Yusuke U, Takahiro F, Yuuki K, et al. Japanese Journal of Applied Phy-sics, 2011, 50 (9),09ND02.
33 Nunes-Pereira J, Sencadas V, Correia V, et al. Sensors and Actuators A: Physical, 2013, 196,55.
34 Smith M, Chalklen T, Lindackers C, et al. ACS Applied Bio Material, 2020, 3 (4),2140.
35 Ayesha S, Kumar G S, Vitor S, et al. Journal of Materials Chemistry B, 2017, 5 (35),7352.
36 Kawai T, Rahman N, Matsuba G, et al. Macromolecules, 2006, 40,9463.
37 Hao N, Liu Y, Zou J. Journal of Jiangsu University of Science and Technology (Natural Science Edition) , 2015, 29 (1),38(in Chinese).
郝妮媛, 刘阳, 邹俊,江苏科技大学学报(自然科学版), 2015, 29 (1),38.
38 Alema C, Lotz B, Puiggali J. Macromolecules, 2001, 34,4795.
39 Michael S, Yonatan C, Qingshen J, et al. APL Materials, 2017, 5 (7),074105.
40 Puiggali J, Ikada Y, Tsuji H, et al. Polymer, 2000, 41,8921.
41 Masamichi A, Hideki K, Keisuke K, et al. Japanese Journal of Applied Physics, 2012, 51,09ld14.
42 Jing Q S, Kar-Narayan S. Journal of Physics D: Applied Physics, 2018, 51 (30),303001.
43 Conrad S L,James M F,Cheol P. Journal of Polymer Science Part B: Polymer Physics, 2011, 49 (21),1555.
44 Jee L S, Prabu A A, Jin K K. Materials Letters, 2015, 148,58.
45 Qingyang P, Tasaka S, Inorihiro I. Japanese Journal of Applied Physics, 1996, 35,L1442.
46 Yoshiro T, Yu A, Takahiro N, et al. Japanese Journal of Applied Physics, 2017, 56 (10S),10pg03.
47 Yali X, Long J, Xuebing H, et al. Journal of Materials Chemistry A, 2019, 7 (4),1810.
48 Barroca N, Vilarinho P M, Daniel-Da-Silva A L, et al. Applied Physics Letters, 2011, 98 (13),133705.
49 Huang Z M, Zhang Y Z, Kotaki M, et al. Composites Science and Technology, 2003, 63 (15),2223.
50 Hoogsteen W, Postema A R, Pennings A J, et al. Macromolecules, 1990, 23(2), 634.
51 Hoogsteen W, Postema A R, Pennings A J, et al. Macromolecules, 1990, 23 (2),634.
52 Tamil S R, Jin A Y, Jin K K, et al. Fibers and Polymers, 2017, 18 (10),1898.
53 Tetsuo Y, Kenji I, Takaaki N, et al. Japanese Journal of Applied Physics, 2011, 50 (9),09nd13.
54 Wang X F, Liu J Y, Wang H B, et al. Polymer Materials Science and Engineering, 2014, 30 (8),161(in Chinese).
王雪芳, 刘景艳, 王鸿博, 等.高分子材料科学与工程, 2014, 30 (8),161.
55 Suhei I, Michiya S, Hiroomi H, et al. Japanese Journal of Applied Phy-sics, 2010, 49 (9),09md14.
56 Syota H, Yuki K, Nobuyuki T, et al. Japanese Journal of Applied Phy-sics, 2015, 54 (10S),10nf01.
57 Sampada B,Paolo E. European Polymer Journal, 2020, 132,109738.
58 Mitsunobu Y, Takayuki O, Katsuki O, et al. Japanese Journal of Applied Physics, 2014, 53 (9S),09pc02.
59 Morvan J,Buyuktanir E, West J, et al. Applied Physics Letters, 2012, 100 (6),063901.
60 Varga M, Morvan J, Diorio N, et al. Applied Physics Letters, 2013, 102 (15),153903.
61 Tetsuo Y, Kenji I, Komei T, et al. Japanese Journal of Applied Physics, 2010, 49 (9),09mc11.
62 Masamichi A, Hideki K, Hiroaki K, et al. Japanese Journal of Applied Physics, 2013, 52 (9S1),09KD17.
63 Yoshiro T, Yuka K, Kyousuke K, et al. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25 (3),772.
64 Curry E J, Ke K, Chorsi M T, et al. Proceedings of the National Academy of Sciences of USA, 2018, 115 (5),909.
65 Yoshiro T. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60 (8),1625.
66 Chang J Y, Dommer M, Chang C, et al. Nano Energy, 2012, 1 (3),356.
67 Gong S B, Zhang B W, Zhang J X, et al. Advanced Functional Materials, 2020, 30 (14),1908724.
68 Zhu J X, Jia L Y, Huang R. Journal of Materials Science: Materials in Electronics, 2017, 28 (16),12080.
69 Masahiro H, Michiya S, Yasuhiro U, et al. Japanese Journal of Applied Physics, 2008, 47 (9),7642.
70 Michiya S, Komei T, Yoshihiro O, et al. Polymer International, 2010, 59 (3),365.
71 Farrar D, Yu M S, West J E, et al. Johns Hopkins APL Technical Digest, 2010, 28 (3),258.
[1] 张姣娇, 王晓君, 张卓雅. 利用碳纳米纤维/Pt纳米片构建柔性电极用于葡萄糖检测[J]. 材料导报, 2022, 36(9): 21010143-6.
[2] 鲁猷栾, 穆新伟, 黄乐舒, 石震, 郑寅. 生物质炭材料:构建电化学传感器的理想修饰材料[J]. 材料导报, 2022, 36(6): 20070278-8.
[3] 刘璐, 王李波, 刘大荣, 胡前库, 周爱国. 二维纳米材料在柔性压阻传感器中的应用研究进展[J]. 材料导报, 2022, 36(4): 20020137-10.
[4] 刘济民, 朱慧敏, 潘健, 宋力雅, 刘珊, 花亚冰, 石锐, 徐亮. 新型可生物降解的组织可黏附材料的合成与表征[J]. 材料导报, 2022, 36(3): 20120176-6.
[5] 李慧娟, 刘诗斌, 冯晴亮. 基于二维层状半导体材料的电化学传感器性能研究及应用进展[J]. 材料导报, 2022, 36(1): 20080298-10.
[6] 朱烨森, 刘梁, 徐云泽, 王晓娜, 刘刚, 黄一. 溶液pH和温度对X65管线钢焊缝非均匀腐蚀的影响[J]. 材料导报, 2022, 36(1): 20090152-7.
[7] 邵丹, 王美玲, 陈志炎, 高亚军, 庞欢. 碳材料在色素电化学传感中的研究进展[J]. 材料导报, 2021, 35(z2): 22-27.
[8] 陈卫英, 陈真勇, 杨在君, 匙峰, 黎云祥. 胶原-乙酸混合溶液静电纺丝可纺性及电纺胶原膜力学特性评估[J]. 材料导报, 2021, 35(z2): 516-519.
[9] 岳青, 王绍德, 徐飞, 刘涛. 静电纺丝技术及其在各领域中的应用[J]. 材料导报, 2021, 35(Z1): 594-599.
[10] 马驰, 王连慧, 潘崇祥, 刘紫婷, 王娜, 史颖. 泡孔聚合物压电材料的研究进展[J]. 材料导报, 2021, 35(7): 7199-7204.
[11] 郝喜娟, 赵沈飞, 张春媚, 胡芳馨, 杨鸿斌, 郭春显. 基于纳米仿生酶构建电化学生物传感器用于活性氧检测[J]. 材料导报, 2021, 35(3): 3183-3193.
[12] 毛杰, 戴静波, 周俊慧, 张新波, 田宗明, 张斌, 秦永华. 聚乙烯醇/乙二醇/氧化石墨烯/聚苯胺导电复合物水凝胶的制备及性能研究[J]. 材料导报, 2021, 35(24): 24172-24176.
[13] 朱浩彤, 刘玲伟, 闫铭, 张鸿, 郭静, 夏英. 纤维气凝胶的分类、制备工艺及应用现状[J]. 材料导报, 2021, 35(23): 23057-23067.
[14] 刘文清, 张涛. 细菌视紫红质在生物传感器中的应用进展[J]. 材料导报, 2021, 35(23): 23171-23182.
[15] 武文浩, 郭莉, 张志, 宋江锋, 陈长安, 王广西. 液态锂铅合金中氢同位素测量研究进展[J]. 材料导报, 2021, 35(19): 19125-19133.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed