Please wait a minute...
材料导报  2022, Vol. 36 Issue (3): 20120176-6    https://doi.org/10.11896/cldb.20120176
  生物医用材料 |
新型可生物降解的组织可黏附材料的合成与表征
刘济民1,2, 朱慧敏1,2, 潘健3, 宋力雅2, 刘珊4, 花亚冰2, 石锐5, 徐亮1,2
1 天津大学化工学院,天津 300350
2 军事医学研究院毒物药物研究所,抗毒药物与毒理学国家重点实验室,北京 100850
3 中国中医科学院广安门医院,北京 100053
4 火箭军特色医学中心病理科,北京 100850
5 北京市积水潭医院,北京市创伤骨科研究所,北京 100035
Synthesis and Characterization of New Biodegradable Tissue Adhesive Materials
LIU Jimin1,2, ZHU Huimin1,2, PAN Jian3, SONG Liya2, LIU Shan4, HUA Yabing2, SHI Rui5, XU Liang1,2
1 School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350,China
2 State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Science, Beijing 100850, China
3 Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing 100053, China
4 Pathology Department of PLA Rocket Force Characteristic Medical Center, Beijing 100850, China
5 Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
下载:  全 文 ( PDF ) ( 4128KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 设计合成了一类可聚合固化且具有良好生物降解性能的组织黏附材料。材料使用前为单体分子,常温下呈液态,单体结构含有寡聚乳酸(OLA)片段和氰基丙烯酸酯(CA)官能团。在接触到肌体组织时,单体可通过CA官能团发生分子间聚合形成梳状聚合物并产生黏附。聚合物中的OLA侧链结构可赋予其良好的生物相容性和可降解性。合成了OLA末端分别为羧基或苄基的两种单体(OLA4-CA和OLA4B-CA),通过核磁氢谱鉴定了单体化学结构,采用剪切拉伸强度和固化时间表征组织黏附能力,利用凝胶渗透色谱测试聚合物分子量,在体内、外模型中评价聚合物的降解性能,通过植入试验研究聚合物的生物相容性,此外,采用体外抑菌圈试验测试了材料的抑菌性能。试验结果表明:成功合成了目标单体;单体接触肌体组织可在3 min内聚合固化并产生有效的黏附能力;聚合物的降解性能与侧链OLA片段的末端羧基结构相关;优选的OLA4-CA的聚合物在小鼠体内植入模型中12 h左右即被完全降解吸收,且具有良好的生物相容性;此外,在体外抑菌试验中,材料显示出浓度依赖性的抑菌能力。这类可聚合固化材料有望进一步用于新型创伤敷料和组织粘附材料的开发。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘济民
朱慧敏
潘健
宋力雅
刘珊
花亚冰
石锐
徐亮
关键词:  寡聚乳酸  氰基丙烯酸酯  抑菌  梳状聚合物    
Abstract: This paper designed and synthesized a kind of polymerizable and curable tissue adhesive materials with good biodegradability. The material is a monomer molecule before use, and it is liquid at room temperature. The monomer structure is composed of monomeric oligolactic acid (OLA) fragments and cyanoacrylate (CA) functional groups. When coming into contact with body tissues, monomers can undergo intermolecular polymerization through CA functional groups to form comb polymers and produce adhesion. The OLA side chain structure in the polymer can give good biocompatibility and degradability. Two monomers, OLA4-CA and OLA4B-CA, with carboxyl or benzyl groups at the ends of OLA were synthesized. The chemical structure of the monomers was determined by 1H nuclear magnetic resonance spectroscopy, and the shear tensile strength and curing times were used to characterize tissue adhesion. Polymer molecular weight and polymer degradation in vivo and in vitro was analyzed by gel permeation chromatography, with biocompatibility determined using implantation tests. In addition, the bacteriostatic properties of the material were tested by inhibition zone test in vitro. The results show that the target monomer is synthesized successfully and the synthesized monomer polymerized and solidified within 3 min following tissue contact and produced effective adhesion.Degradation of the polymer was related to the terminal carboxyl structure of the side chain OLA segment, with the preferred OLA4-CA polymer completely degraded and absorbed within 12 h after implantation in a mouse model; this indicated good biocompatibility. In addition, the in vitro inhibition zone test showed concentration-dependent antibacterial activity of material. This polymerizable material is expected to be used in the development of new wound dressings and tissue adhesive materials.
Key words:  oligo-lactic acid    cyanoacrylate    antibacterial    brushed copolymer
发布日期:  2022-02-10
ZTFLH:  R318.08  
基金资助: 北京市自然科学基金(7202146)
通讯作者:  shirui@jst-hosp.com.cn;xuliang24998@yahoo.com   
作者简介:  刘济民,天津大学制药工程专业研究生,2018年11月开始在北京军事医学研究院毒物药物研究所联合培养学习,主要从事新型医用材料的设计合成与应用的研究。
朱慧敏,天津大学硕士研究生。于2018—2020年在军事医学研究院联合培养,主要从事药物化学方面的研究。
石锐,北京市创伤骨科研究所研究员。主要从事生物医用高分子、骨科、伤口类生物材料及器械的研究。
徐亮,现为军事医学研究院副研究员,硕士研究生导师,主要从事智能核酸药物、小分子药物、新型药物载体材料、功能性材料等方向的研究。共同第一作者
引用本文:    
刘济民, 朱慧敏, 潘健, 宋力雅, 刘珊, 花亚冰, 石锐, 徐亮. 新型可生物降解的组织可黏附材料的合成与表征[J]. 材料导报, 2022, 36(3): 20120176-6.
LIU Jimin, ZHU Huimin, PAN Jian, SONG Liya, LIU Shan, HUA Yabing, SHI Rui, XU Liang. Synthesis and Characterization of New Biodegradable Tissue Adhesive Materials. Materials Reports, 2022, 36(3): 20120176-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120176  或          http://www.mater-rep.com/CN/Y2022/V36/I3/20120176
1 Li Y L, Yue X H, Nie Z, et al. Chinese Journal of Tissue Engineering Research, 2021, 25(16), 2612 (in Chinese).
李晏乐, 岳肖华, 聂真, 等.中国组织工程研究, 2021, 25(16), 2612.
2 Moataz A E, Ki-Hyun K, Jae-Woo P, et al. Renewable and Sustainable Energy Reviews, 2017, 79, 1346.
3 Li Z B, Tan B H, Lin T T, et al. Progress in Polymer Science, 2016, 62, 22.
4 Farah S, Anderson D G, Langer R. Advanced Drug Delivery Reviews, 2016, 107, 367.
5 Zhang H P, Ruan J M, Zhou Z C, et al. Materials Science and Enginee-ring of Powder Metallurgy, 2004(3), 259 (in Chinses).
张海坡, 阮建明, 周忠诚, 等.粉末冶金材料科学与工程, 2004 (3), 259.
6 Li Y X, Zhu Y L, Peng B, et al. Acta Materiae Compositae Sinica, 2021(8), 2527 (in Chinese).
黎永轩, 朱韵来, 彭博, 等.复合材料学报, 2021(8), 2527.
7 Yuan C J. Chinese Journal of Chemical Education, 2020, 41(12), 1 (in Chinese).
袁传军.化学教育, 2020, 41(12), 1.
8 Zhang L, Hou Y H, Li C M, et al. Sichuan Medical Journal, 2020, 41(11), 1121 (in Chinese).
张林, 侯艳红, 李春梅, 等.四川医学, 2020, 41(11), 1121.
9 Montanaro L, Arciola C R, Cenni E, et al. Biomaterials, 2001, 22(1), 59.
10 Jin I L, Woo-Kul L. Colloids and Surfaces B: Biointerfaces, 2014, 122, 669.
11 Yu T T, Ming G J, Glen S K. Journal of the American Chemical Society, 2016, 138(28), 8674.
12 Chen Z D, Li L, Zou H. Chemistry and Adhesion, 2001(1), 21 (in Chinese).
陈子达, 李玲, 邹翰.化学与粘合,2001(1), 21.
13 Deng J, Yuk H, Wu J, et al. Nature Materials, 2021, 20, 229.
14 Romero I L, Mimica L M J, Hida R Y. Investigative Ophthalmology and Visual Science, 2005, 46, 2783.
15 Rushbrook J L, White G, Kidger L, et al. Journal of Infection Prevention, 2014, 15(6), 236.
16 Romero I L, Malta J B N S, Silva C B, et al. Indian Journal of Ophthalmology, 2009, 57, 341.
17 Liang X, Tao Z, et al. Journal of Materials Chemistry B, 2016,4(23), 4147.
[1] 米海娜, 于建芳, 王哲, 张涛, 郭继然, 王喜明. 具有保健功效木材的制备及其特性研究进展[J]. 材料导报, 2021, 35(11): 11215-11221.
[2] 张晓春,于良民,姜晓辉. 含辣素衍生结构单体及其聚合物的合成、抑菌与抑藻性能[J]. 《材料导报》期刊社, 2018, 32(2): 193-197.
[3] 郑寅, 陈硕平, 王苏展, 宋新建, 胡盛. 甘油分散含银溶胶的制备及抑菌性能研究*[J]. 《材料导报》期刊社, 2017, 31(12): 30-34.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed