Please wait a minute...
材料导报  2020, Vol. 34 Issue (20): 20182-20186    https://doi.org/10.11896/cldb.19110134
  高分子与聚合物基复合材料 |
高熔体强度聚乳酸的结晶和发泡性能
赵中国, 张鑫, 程少华, 王渺, 梁攀旭, 李万顺, 贾仕奎
陕西理工大学材料科学与工程学院,矿渣综合利用环保技术国家地方联合工程实验室,汉中 723000
Crystallization and Foaming Properties of High-melt-strength Poly (lactic acid)
ZHAO Zhongguo, ZHANG Xin, CHENG Shaohua, WANG Miao, LIANG Panxu, LI Wanshun, JIA Shikui
National and Local Engineering Laboratory for Slag Comprehensive Utilization and Environment Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
下载:  全 文 ( PDF ) ( 4046KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 详细研究了长支链结构的形成对线性聚乳酸结晶行为、力学性能和发泡性能的影响。在线性聚乳酸中添加季戊四醇三丙烯酸酯(PETA)、过氧化二异丙苯(DCP)和二硫化四乙基秋兰姆 (TETDS),通过化学改性得到长支链支化的聚乳酸(LCBPLA)。在转矩流变仪中,随着PETA含量的提高,反应所需要的混合能也逐渐增加,从4.5 kJ增加到7.25 kJ。通过DSC对等温和非等温结晶行为的测试发现,长支链结构的形成能够显著提高聚乳酸的结晶性能。随着PETA含量的增加(从0%增加到1%),LCBPLA的结晶度从3.5%左右提高到45%左右,开始结晶温度从120 ℃左右提高到143 ℃左右,结晶速率也显著提高。同时,长支链结构的形成在一定程度上也提高了聚乳酸的力学性能,从68.8 MPa提高到82.7 MPa,这主要是因为长支链结构能够形成网络结构。通过在不同温度下对改性聚乳酸进行超临界CO2发泡实验,发现改性聚乳酸具有较好的发泡性能;相对于纯PLA,改性聚乳酸的发泡倍率和泡孔尺寸显著提高;在155 ℃的实验温度下,聚乳酸的发泡倍率从8.7提高到30.5。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵中国
张鑫
程少华
王渺
梁攀旭
李万顺
贾仕奎
关键词:  聚乳酸  结晶性能  长支链结构  力学性能  发泡性能    
Abstract: In this paper, effects of the long-chain branched on the crystallization behavior, mechanical properties and foaming properties of linear PLA were studied in detail. Long-chain branched PLA (LCBPLA) was obtained by adding pentaerythritol triacrylate (PETA), dicumyl peroxide (DCP) and TETDS. In the torque rheometer, with the increase of PETA content, the mixing energy gradually increased, from 4.5 kJ to 7.25 kJ. The analyses of non-isothermal and isothermal crystallization show that the formation of the long-chain branched structure could significantly improve the crystallization performance of PLA. With the increase of PETA content (from 0% to 1%), the crystallinity of LCBPLA increased from about 3.5% to about 45%, the initial crystallization temperature increased from about 120 ℃ to about 143 ℃, and the crystallization rate also significantly increased. In addition, the formation of a long-chain branched structure also improved the mechanical properties of PLA to some extent, from 68.8 MPa to 82.7 MPa, because the long-chain branched structure can form a network structure. It was found that modified PLA had better foaming property by supercritical CO2 at different foaming temperatures. Compared with pure PLA, the foaming ratio and foam size of modified PLA were significantly increased. The foaming ratio of PLA was increased from 8.7 to 30.5 at 155 ℃.
Key words:  poly (lactic acid)    crystallization    long-chain branched structure    mechanical properties    foaming properties
               出版日期:  2020-10-25      发布日期:  2020-11-06
ZTFLH:  TB332  
基金资助: 陕西省教育厅基金(20JK0564);中国博士后基金(2020M673585XB)
通讯作者:  zhaozhongguo@snut.edu.cn   
作者简介:  赵中国,陕西理工大学讲师,2013年9月至2019年7月,在四川大学高分子科学与工程学院获得材料加工专业工学硕士和工学博士学位,毕业后在陕西理工大学任教。在国内外学术期刊发表论文16余篇,其中以第一作者发表SCI论文5篇,国际会议论文3篇,申请国家发明专利5项,其中授权3项。主要从事聚合物高性能化以及传感器应用的研究,参与了多项国家自然基金、横向项目以及中英建桥项目研究工作。
引用本文:    
赵中国, 张鑫, 程少华, 王渺, 梁攀旭, 李万顺, 贾仕奎. 高熔体强度聚乳酸的结晶和发泡性能[J]. 材料导报, 2020, 34(20): 20182-20186.
ZHAO Zhongguo, ZHANG Xin, CHENG Shaohua, WANG Miao, LIANG Panxu, LI Wanshun, JIA Shikui. Crystallization and Foaming Properties of High-melt-strength Poly (lactic acid). Materials Reports, 2020, 34(20): 20182-20186.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110134  或          http://www.mater-rep.com/CN/Y2020/V34/I20/20182
1 Ren J, Zhang Z W. Materials Reports, 2006, 20(10), 68(in Chinese).
任杰, 张振武. 材料导报, 2006, 20(10),68.
2 Tasaka F, Ohya Y, Ouchi T. Macromolecules, 2001, 34 (16), 5494.
3 Bordes P, Pollet E, Avérous L. Progress in Polymer Science, 2009, 34(2), 125.
4 Numata K, Srivastava R K, Finne-Wistrand A, et al. Biomacromolecules, 2007, 8(10), 3115.
5 Day M, Nawaby A, Liao X. Journal of Thermal Analysis and Calorimetry, 2006, 86(3), 623.
6 Kaczmarek H, Nowicki M. Journal of Polymer Research, 2013, 20(3), 91.
7 He C L, Tang C H, Tian H Y, et al. Acta Polymerica Sinica, 2013(6), 21(in Chinese).
贺超良, 汤朝晖, 田华雨, 等. 高分子学报, 2013(6), 21.
8 Dorgan J R, Janzen J, Clayton M P, et al. Journal of Rheology, 2005, 49(3), 607.
9 Lim L T, Auras R, Rubino M. Progress in Polymer Science, 2008, 33(8), 820.
10 Palade L I, Lehermeier H J, Dorgan J R. Macromolecules, 2001, 34(5), 1384.
11 Yu L, Dean K, Li L. Progress in Polymer Science, 2006, 31(6), 576.
12 Yang Y C, Zhang C, Chen X H, et al. Acta Polymerica Sinica, 2019, 35(8),69(in Chinese).
杨永潮, 张冲, 陈绪煌, 等. 高分子材料科学与工程, 2019, 35(8),69.
13 Cho J, Baratian S, Kim J, et al. Polymer, 2003, 44(3), 711.
14 Xu H, Teng C, Yu M. Polymer, 2006, 47(11), 3922.
15 Martin O, Averous L. Polymer, 2001, 42(14), 6209.
16 Shibata M, Teramoto N, Inoue Y. Polymer, 2007, 48(9), 2768.
17 Xiao H, Li P, Ren X, et al. Journal of Applied Polymer Science, 2010, 118(6), 3558.
18 Xiao H, Lu W, Yeh J T. Journal of Applied Polymer Science, 2009, 113(1), 112.
19 Liang X L, Wen J, Yang W D, et al. Acta Polymerica Sinica, 2019, 50(2),57(in Chinese).
梁孝林, 闻杰, 杨雯迪, 等. 高分子学报, 2019, 50(2),57.
20 Liu J, Lou L, Yu W, et al. Polymer, 2010, 51(22), 5186.
21 Liu J, Zhang S, Zhang L, et al. Polymer, 2014, 55(10), 2472.
22 Li Z, Zhao X, Lin Y, et al. Polymer, 2015, 56, 523.
23 You J, Wei Y, Zhou C. Industrial & Engineering Chemistry Research, 2014, 53, 1097.
24 Wang X, Shi M, Yu X L,et al. Materials Reports A:Review Papers, 2019, 33(6), 1897(in Chinese).
王鑫, 石敏, 余晓磊,等. 材料导报:综述篇, 2019, 33(6), 1897.
25 Zhao Z G, Yang Q, Coates P D, et al. Industrial & Engineering Chemistry Research, 2018, 57,11312.
[1] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[2] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[3] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[4] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[5] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[6] 宋文杰, 刘洁, 董会萍, 张光, 王彤. 超轻镁锂合金熔炼工艺研究[J]. 材料导报, 2020, 34(Z1): 316-321.
[7] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[8] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[9] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[10] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[11] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[12] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[13] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[14] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
[15] 信思树, 王镇华, 李春玲, 王清. 体心立方BCC基多元合金中的共格析出及强化[J]. 材料导报, 2020, 34(7): 7130-7137.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed