Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 21070110-8    https://doi.org/10.11896/cldb.21070110
  金属与金属基复合材料 |
稀土Y及热处理对6016铝合金组织与性能的影响
卢博1, 李安敏1,2,3, 饶宇1, 汪林忠1, 左天辰1, 胡杨1
1 广西大学资源环境与材料学院,南宁 530004
2 广西生态型铝产业协同创新中心,南宁 530004
3 广西大学广西有色金属及特色材料加工重点实验室,南宁 530004
Effect of Rare Earth Y and Heat Treatment on Microstructure and Properties of 6016 Aluminum Alloy
LU Bo1, LI Anmin1,2,3, RAO Yu1, WANG Linzhong1, ZUO Tianchen1, HU Yang1
1 College of Resources, Environment and Materials,Guangxi University, Nanning 530004, China
2 Center of Ecological Collaborative Innovation for Aluminum Industry in Guangxi, Nanning 530004, China
3 Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials,Guangxi University, Nanning 530004, China
下载:  全 文 ( PDF ) ( 13539KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了提高6016铝合金的性能,通过金相显微镜(OM)、扫描电镜(SEM)、X射线衍射(XRD)、透射电镜(TEM)、电子背散射衍射(EBSD)等实验方法,研究了稀土元素钇(Y)及其含量和热处理工艺对6016铝合金的组织和拉伸性能的影响。结果表明:随着Y的添加,6016铝合金的晶粒明显细化,并且细化的晶粒分布趋于均匀,当Y的添加量为0.35%(质量分数)时,合金的晶粒细化效果、强度、断后伸长率达到最佳值,而当过量添加Y时,在相同的热处理状态下,合金力学性能有所降低。Y元素主要以Al3Y、AlFeSiY化合物的形式存在于晶界上,能够促使再结晶形核率的增加,有利于小角度界面向大角度界面发展,对合金回复再结晶过程有积极作用。6016铝合金具有良好的烤漆硬化性,添加0.35%Y元素的合金经模拟烤漆6 h后,抗拉强度达到320 MPa,屈服强度达到270 MPa,相比于其T4p态,抗拉强度提升68 MPa,屈服强度提升116 MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢博
李安敏
饶宇
汪林忠
左天辰
胡杨
关键词:  6016铝合金  晶粒细化  拉伸性能  再结晶  烤漆硬化效应    
Abstract: In order to improve the performance of 6016 aluminum alloy, the effects of the rare earth Y and the heat treatment process on the microstructure and tensile properties of 6016 aluminum alloy were studied by means of OM, SEM, XRD, TEM and EBSD. The results show that with the addition of Y, the grain of 6016 aluminum alloy is obviously refined, and the grain distribution tends to be uniform. When the addition of Y is 0.35wt%, the grain refinement effect, strength and elongation of the alloy reach the best value. However, when the element Y is added too much, the mechanical properties are reduced under the same heat treatments condition. Element Y mainly exists in the form of Al3Y and AlFeSiY compounds at the grain boundary, helping the nucleation rate of recrystallization increase, which is conducive to the development of small-angle boundary towards big-angle interface, and has a positive effect on the recrystallization process of alloy. 6016 aluminum alloy has good paint hardening. The tensile strength and yield strength of the alloy with 0.35wt%Y element are up to 320 MPa and 270 MPa after simulated paint baking for 6 h. Compared with its T4p state, the tensile strength is improved by 68 MPa and the yield strength is improved by 116 MPa.
Key words:  6016 aluminum alloy    grain refinement    tensile property    recrystallization    paint-bake response
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  TG14  
基金资助: 2021年中央引导地方科技发展资金专项(桂科ZY21195030);2017年第一批广西创新驱动发展专利(科技重大专项)项目(桂科AA17202008)
通讯作者:  lianmin@gxu.edu.cn   
作者简介:  卢博,广西大学硕士研究生。2018年6月,在湖北工程学院化学与材料科学学院获得材料化学工学学士学位。主要研究方向为铝合金的强韧化、高熵合金。
李安敏,广西大学资源环境与材料学院副教授、硕士研究生导师。1995年7月本科毕业于武汉科技大学材料系,2010年6月在广西大学结构工程专业取得博士学位。主要从事高熵合金、铝合金的强韧化、复合材料的研究工作。近年来,在高熵合金、铝合金、复合材料等领域发表论文30余篇,包括Journal of Materials Engineering and Performance、Acta Metallurgica Sinica、Journal of Electronic Materials等。
引用本文:    
卢博, 李安敏, 饶宇, 汪林忠, 左天辰, 胡杨. 稀土Y及热处理对6016铝合金组织与性能的影响[J]. 材料导报, 2022, 36(19): 21070110-8.
LU Bo, LI Anmin, RAO Yu, WANG Linzhong, ZUO Tianchen, HU Yang. Effect of Rare Earth Y and Heat Treatment on Microstructure and Properties of 6016 Aluminum Alloy. Materials Reports, 2022, 36(19): 21070110-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070110  或          http://www.mater-rep.com/CN/Y2022/V36/I19/21070110
1 Zhou J, Wan X, Li Y. Materials Today: Proceedings, 2015, 2, 5015.
2 Henriksson F, Johansen K. Procedia CIRP, 2016, 50, 683.
3 Wang M J, Huang D Y, Jiang H T. Heat Treatment of Metals, 2006(9), 34 (in Chinese).
王孟君, 黄电源, 姜海涛. 金属热处理, 2006(9), 34.
4 Li H, Zhang H, Zhu Z F, et al. Heat Treatment of Metals, 2016, 41(12), 149 (in Chinese).
李辉, 张华, 祝贞凤, 等. 金属热处理, 2016, 41(12), 149.
5 Xu C, Xiao W, Zheng R, et al. Materials & Design, 2015, 88, 485.
6 Santos A, Costa S, Pinto A M, et al. Microsc Microanal, 2015, 21(S5), 43.
7 Xu C, Wang F, Mudassar H, et al. Journal of Materials Engineering and Performance, 2017, 26(4), 1605.
8 Tzeng Y C, Wu C T, Yang C H, et al. Materials Science and Enginee-ring: A, 2014, 614, 54.
9 Xu C, Xiao W L, Hanada S, et al. Materials Characterization, 2015, 110, 160.
10 Lu Z, Zhang L. Materials & Design, 2017, 116, 427.
11 Zhang X Y, Xiong J, Zhao G Z, et al. Nonferrous Metals, 2010, 62(1), 1 (in Chinese).
张向宇, 熊计, 赵国忠, 等. 有色金属, 2010, 62(1), 1.
12 Hosseinifar M, Malakhov D V. Metallurgical and Materials Transactions A, 2010, 42(3), 825.
13 Zhao Q, Huang H J, Yuan X G, et al. Transactions of Materials and Heat Treatment, 2015, 36(11), 40 (in Chinese).
赵倩, 黄宏军, 袁晓光, 等. 材料热处理学报, 2015, 36(11), 40.
14 Song X, Yan H, Zhang X. Journal of Rare Earths, 2017, 35(4), 412.
15 Qiu H, Yan H, Hu Z. Journal of Alloys and Compounds, 2013, 567, 77.
16 Li B, Wang H, Jie J, et al. Materials & Design, 2011, 32(3), 1617.
17 Liu Z, Hu Y M. Rare Metals, 2008, 5, 536.
18 Li Q, Li B, Li J, et al. Materials Science and Engineering: A, 2018, 722, 47.
19 Li B. Journal of Wuhan University of Technology (Materials Science Edition), 2009, 4, 47.
20 Mao G, Yan H, Zhu C, et al. Journal of Alloys and Compounds, 2019, 806, 909.
21 Mao G, Liu S, Wu Z,et al. Materials Letters, 2020, 271, 127795.
22 Ding W, Zhao X, Chen T, et al. Journal of Alloys and Compounds, 2020, 830, 154685.
23 Wan B, Chen W, Liu L, et al. Materials Science and Engineering, A, 2016, 666, 165.
24 Dong Y, Zheng R, Lin X P, et al. Journal of Rare Earths, 2013, 31(2), 204.
25 Cheng X M, Han J Q, Yu G M, et al. Hot Working Technology. 2018, 47(20), 38 (in Chinese).
程晓敏, 韩加强, 喻国铭, 等. 热加工工艺, 2018, 47(20), 38.
26 Tsai Y C, Chou C Y, Lee S L, et al. Journal of Alloys and Compounds, 2009, 487(1-2), 157.
27 Wei Z, Lei Y, Yan H, et al. Journal of Rare Earths, 2019, 37(6), 659.
28 Liu S F, Luo L M, Zhou J P, et al. Journal of the Chinese Society of Rare Earths, 2018, 36(2), 202 (in Chinese).
刘生发, 罗利民, 周锦平, 等. 中国稀土学报, 2018, 36(2), 202.
29 Mizutani U, Sato H, Inukai M, et al. Acta Physica Polonica A, 2014, 126(2), 531.
30 Ning Y, Zhou X, Hong D. Acta Metallurgica Sinica (English Letters), 1992, 11, 327.
31 Li Z, Yan H. Journal of Rare Earths, 2015, 33(9), 995.
32 Gao G J. Study on microstructure property and pre-treatment process of AA6016 aluminum alloy for automobile. Master's Thesis, Northeastern University, China, 2015 (in Chinese).
高冠军. 汽车用AA6016铝合金预处理工艺与组织性能研究. 硕士学位论文, 东北大学, 2015.
33 Ding K, Li W, Bi J J. Special-cast and Non-ferrous Alloys, 2009, 29(12), 1160 (in Chinese).
丁科, 李炜, 毕娟娟. 特种铸造及有色合金, 2009, 29(12), 1160.
34 Singh R K, Singh A K, Prasad N E. Materials Science and Engineering A, 2000, 277, 114.
35 Dai P, Luo X, Yang Y Q, et al. Materials Science and Engineering A, 2018, 729, 411.
[1] 刘鹏, 马吉恩, 方攸同, 李刚. 多次补焊对304不锈钢焊接接头性能的影响[J]. 材料导报, 2022, 36(Z1): 21120176-5.
[2] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[3] 曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
[4] 李朝阳, 黄光杰, 曹玲飞, 曹宇, 林林. 升温速率对AA2060铝锂合金中间形变热处理微观组织的影响[J]. 材料导报, 2022, 36(7): 21020008-7.
[5] 李亮, 栾贻恒, 吴俊, 杜修力, 吴文杰. 钢网片-聚乙烯纤维增强水泥基复合材料中低速动态拉伸性能试验研究[J]. 材料导报, 2022, 36(5): 20120031-6.
[6] 张鸿飞, 丁雨田, 雷健, 沈悦, 陈建军, 高钰璧. 中低温挤压Mg-1.5Zn-0.2Ca合金组织与性能研究[J]. 材料导报, 2022, 36(3): 20120264-5.
[7] 孙建, 黄贞益, 李景辉, 王萍, 吴旭明. 基于加工硬化率的新型轻质钢动态再结晶临界条件及变形机制研究[J]. 材料导报, 2022, 36(19): 21050251-9.
[8] 万里, 张奇, 张勇, 唐建国, 邓运来. Cr和Mn对汽车用铝合金型材压溃性能的影响[J]. 材料导报, 2022, 36(18): 20110147-4.
[9] 于娟, 李国爱, 冯朝辉, 陈军洲, 赵唯一. 中间形变热处理对铝锂合金短横向拉伸性能的影响[J]. 材料导报, 2022, 36(18): 20060118-5.
[10] 李艳, 周增林, 何学良, 陈文帅, 惠志林. 轧制钼材制备过程织构演变的研究现状[J]. 材料导报, 2022, 36(12): 20090340-6.
[11] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[12] 曾金成, 宋波, 左敦稳, 邓永芳. 外加辅助条件搅拌摩擦焊技术研究进展[J]. 材料导报, 2021, 35(7): 7162-7168.
[13] 黄子坤, 孙威. 钛合金动态塑性变形过程中绝热剪切带的形成机理[J]. 材料导报, 2021, 35(3): 3122-3128.
[14] 马琳, 宋雨键, 崔庆贺, 石瑶, 姬书得, 李壮. 搅拌摩擦加工工艺及水冷对A356铸铝合金晶粒细化作用及变形控制[J]. 材料导报, 2021, 35(24): 24122-24127.
[15] 朱奕瑶, 冯俊强, 张增耀, 杨哲宁, 张向鹏, 王红霞. 形变热处理对Mg-4Al-1Si-1Gd合金组织及性能的影响[J]. 材料导报, 2021, 35(20): 20149-20154.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed