Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 21070098-5    https://doi.org/10.11896/cldb.21070098
  无机非金属及其复合材料 |
Cu-SSZ-13与Fe-β混合催化剂上NH3-SCR性能研究
李渊, 侯宇坤, 赵立国, 谭小耀
天津工业大学化学工程与技术学院,天津 300387
Study on NH3-SCR Performance over Cu-SSZ-13 and Fe-β Mixed Catalysts
LI Yuan, HOU Yukun, ZHAO Liguo, TAN Xiaoyao
School of Chemical Engineering and Technology Tiangong University, Tianjin 300387, China
下载:  全 文 ( PDF ) ( 5271KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铜改性SSZ-13分子筛(Cu-SSZ-13)是一种高效的去除NOx的NH3选择性还原催化剂,但是Cu-SSZ-13的高温(>400 ℃)脱硝活性欠佳。相比Cu-SSZ-13,铁改性β分子筛催化剂(Fe-β)价格便宜且高温脱硝性能较好,因而Fe-β也备受人们关注。虽然掺杂铜后,Fe-β催化剂的低温活性有所提高,但是其对NOx脱除的低温活性温度窗口还有待拓宽,最高脱除率还有待提高。本工作拟通过Cu-SSZ-13与Fe-β的机械混合制得复合催化剂,以拓展催化剂的温度窗口。在商用SSZ-13的基础上,通过离子交换不同浓度的硝酸铜溶液制备了Cu-SSZ-13。氨气选择性催化还原(Ammonia selective catalytic reduction, NH3-SCR)测试表明交换液为0.04 mol/L的硝酸铜溶液时所制备的Cu-SSZ-13的脱硝活性最好,200~400 ℃ NOx脱除率接近100%。利用粉末X射线衍射(XRD)、电子扫描显微镜(SEM)等一系列手段对催化剂进行了表征。结果表明:机械混合Cu-SSZ-13+Fe-β对Cu-SSZ-13的NH3-SCR低温活性窗口影响不大,但对其高温脱硝性能有较大提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李渊
侯宇坤
赵立国
谭小耀
关键词:  Fe-β  Cu-SSZ-13  机械混合  氨气选择性催化还原    
Abstract: Copper modified SSZ-13 molecular sieve (Cu-SSZ-13) is an efficient NH3 selective reduction catalyst for NOx removal, but the NOx removal activity of Cu-SSZ-13 at high temperature (>400 ℃) is poor. Compared with Cu-SSZ-13, Fe modified β molecular sieve catalyst (Fe-β) is cheaper and has better denitration performance at high temperature, so Fe-β has attracted much attention. The low temperature activity of Fe-β catalyst is improved after Cu doping, but cryogenic active temperature window and the maximum removal rate of SCR denitration catalyst still need to be improved. In this work, the composite catalyst was prepared by mechanical mixing of Cu-SSZ-13 and Fe-β to expand the temperature window of the catalyst. Cu-SSZ-13 was prepared by ion exchange of different concentrations of Cu(NO3)2 solution with commercial SSZ-13. The NH3-SCR test results show that Cu-SSZ-13 prepared by exchange of Cu(NO3)2 solution with the concentration of 0.04 mol/L has the best denitration activity, and the NOx removal rate is close to 100% at 200—400 ℃. The catalysts were characterized by powder X-ray diffraction (XRD), electron scanning microscope (SEM) and a series of other means. Reaction performance test results show that mechanical mixing of Cu-SSZ-13+Fe-β does not affect the low temperature activity window of NH3-SCR of Cu-SSZ-13, but the high temperature performance of catalyst is improved after mechanical mixing.
Key words:  Fe-β    Cu-SSZ-13    mechanical mixing    NH3-SCR
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  O643.36  
基金资助: 国家自然科学基金(91745116)
通讯作者:  liyuan@tiangong.edu.cn   
作者简介:  李渊,天津工业大学化学工程与技术学院教授、博士研究生导师。2002年3月毕业于河北工业大学获得工学硕士学位;2005年6月毕业于天津大学获得工学博士学位。研究方向为新型催化剂的制备及应用。在国内外重要期刊发表文章30余篇。
引用本文:    
李渊, 侯宇坤, 赵立国, 谭小耀. Cu-SSZ-13与Fe-β混合催化剂上NH3-SCR性能研究[J]. 材料导报, 2022, 36(19): 21070098-5.
LI Yuan, HOU Yukun, ZHAO Liguo, TAN Xiaoyao. Study on NH3-SCR Performance over Cu-SSZ-13 and Fe-β Mixed Catalysts. Materials Reports, 2022, 36(19): 21070098-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070098  或          http://www.mater-rep.com/CN/Y2022/V36/I19/21070098
1 Shan W P, Liu F D, He H. Chinese Science Bulletin, 2014, 59, 2540.
2 Peng Z L. Optimization of in situ synthesis conditions of Cu-SSZ-13 denitration catalyst. Master's Thesis, Taiyuan University of Technology, China, 2015(in Chinese).
彭兆亮. Cu-SSZ-13脱硝催化剂原位合成条件的优化.硕士学位论文, 太原理工大学,2015.
3 Kaspar J, Fornasiero P, Hickey N. Catalysis Today, 2003, 77(4), 419.
4 Zhang Y, Wang H N, Chen R Y. RSC Advances, 2015, 5(83), 67841.
5 Guo K, Zhu Y X, Yan Z, et al. Chemical Engineering Journal, 2020, 389, 124271.
6 Liang J, Ma Y, Song G, et al. Journal of Hazardous Materials, 2020, 398, 122986.
7 Granger P, Parvulescu V I. Chemical Reviews, 2011, 111(5), 3155.
8 Liu F D, Yu Y B, He H. Chemical Communications, 2014, 50, 8445.
9 Han J, Guan B, Peng X S, et al. Chemical Engineering Journal, 2019, 379, 122358.
10 Liu L P, Wu X D, Ma Y, et al. Chemical Engineering Journal, 2019, 383, 123080.
11 Zones S I. Journal of the Chemical Society Faraday Transactions, 1991, 87(22), 3709.
12 Gonzale Martinez J, Villa A. Catalysis Letters, 2021, 151(10), 1.
13 Lomachenko K A, Borfecchia E, Negri C, et al. Journal of the American Chemical Society, 2016, 138(37), 12025.
14 Xi Y, Su C, Ottinger N A, et al. Applied Catalysis B: Environmental, 2021, 284, 119749.
15 Liang J, Tao J X, Mi Y Y, et al. Chemical Engineering Journal, 2021, 409 (13), 128238.
16 Zhao R. One-step synthesis of Fe-Cu-SZ-13 catalyst and its catalytic performance of NH3-SCR. Master's Thesis, Zhejiang University, China, 2017(in Chinese).
赵茹. Fe-Cu-SSZ-13催化剂一步法合成及其NH3-SCR催化性能的研究. 硕士学位论文, 浙江大学, 2017.
17 Wen C. Isomorphic substitution of SSZ-13 zeolite based on density functional theory. Master's Thesis, Taiyuan University of Technology, China, 2016(in Chinese).
文翠. 基于密度泛函理论对SSZ-13分子筛同晶取代的研究. 硕士学位论文, 太原理工大学, 2016.
18 Xu L, Shi C, Chen B B, et al. Microporous and Mesoporous Materials, 2016, 236(1), 211.
19 Xiao F S, Zhang L, Wu Q M, et al. Reaction Chemistry & Engineering, 2019, 4(6), 975.
20 Wang A Y, Wang Y L, Walter E D, et al. Catalysis Today, 2017, 320, 91.
21 Wang X H. Preparation, modification and denitrification performance of SSZ-13 molecular sieve catalyst. Master's Thesis, Beijing University of Chemical Technology, China, 2020(in Chinese).
王晓花. SSZ-13分子筛催化剂的制备,改性及脱硝性能的研究. 硕士学位论文, 北京化工大学, 2020.
22 Xie L J, Liu F D, Ren L M, et al. Environmental Science & Technology, 2014, 48(1),566.
23 Xie L J, Liu F D, Shi X Y, et al. Applied Catalysis B: Environmental, 2015, 179,206.
24 Chen Z X, Wang J, Wang J M, et al. Industrial & Engineering Chemistry Research, 2019,58(45), 20610.
25 Song J, Wang Y L, Walter E D, et al. ACS Catalysis, 2017, 7, 8214.
26 Gao F, Walter E D, Kollar M, et al. Journal of Catalysis, 2014, 319, 1.
27 Zhang D, Yang R T. Energy & Fuels, 2018, 32(2), 2170.
28 Zhang T, Qiu F, Chang H Z, et al. Catalysis Science & Technology, 2016, 6(16), 6294.
29 Gao F, Walter E D, Washton N M, et al. Applied Catalysis B Environmental, 2015, 162, 501.
30 Ma Y H, Zhao H W, Zhang C J, et al. Catalysis Today, 2019, 355, 627.
31 Zhang R R. Selective catalytic reduction of NO by NH3 over modified Cu-SSZ-13 zeolite. Master's Thesis, Tianjin University, China, 2015 (in Chinese).
张冉冉. 改性Cu-SSZ-13分子筛上NH3选择性催化还原NO的性能研究. 硕士学位论文, 天津大学, 2015.
32 Gao F, Walter E D, Karp E M, et al. Journal of Catalysis, 2013, 300, 20.
33 Beale A M, Lezcano-Gonzalez I, Slawinksi W A, et al. Chemical Communications, 2016, 52(36), 6170.
34 Wang J Q. Study on the performance and mechanism of selective catalytic reduction of NO by NH3 over Ce-modified Cu-SSZ-13 zeolite. Master's Thesis, Taiyuan University of Technology, China, 2018(in Chinese).
王俊强. Ce改性Cu-SSZ-13分子筛上NH3选择性催化还原NO的性能与机理研究. 硕士学位论文, 太原理工大学, 2018.
35 Han S, Ye Q, Cheng S Y, et al. Catalysis Science & Technology, 2017, 7, 703.
36 Chen B H, Xu R N, Zhang R D, et al. Evironmental Science & Technology, 2014, 48(23), 13909.
37 Niu C, Shi X Y, Liu F D, et al. Chemical Engineering Journal, 2016, 294, 254.
38 Kwak J H, Zhu H Y, Lee J H, et al. Chemical Communications, 2012, 48(39), 4758.
39 Ma L, Cheng Y S, Cavataio G, et al. Chemical Engineering Journal, 2013, 225(3), 323.
40 Cao Y, Zou S, Lan L, et al. Journal of Molecular Catalysis A Chemical, 2015, 398, 304.
41 Han M J, Jiao Y L, Zhou C H, et al. Rare Metals, 2019, 38(3), 210.
42 Fan C, Chen Z, Pang L, et al. Applied Catalysis A: General, 2018, 550, 256.
43 Zhao F, Li Y, Zhang Y, et al. Fine Chemicals, 2017, 34(2), 179.
赵飞, 李渊, 张岩, 等. 精细化工, 2017, 34(2), 179.
44 Stacey I Z. U.S. patent, US4544538, 1985.
45 Liang J, Mi Y Y, Song G, et al. Journal of Hazardous Materials, 2020, 398, 122986.
46 Wang D, Jangjou Y, Liu Y, et al. Applied Catalysis B Environmental, 2015, 165,438.
[1] 张慧敏, 单展, 王宏, 张晓艳. 球状钼酸钙在可见光下选择性光催化降解废水中的抗生素[J]. 材料导报, 2022, 36(19): 22010249-7.
[2] 李兵, 黄有鹏, 吴福礼, 杨本宏. Ti3C2Tx/Bi2WO6复合材料的制备及其光催化性能[J]. 材料导报, 2022, 36(17): 21010021-4.
[3] 张晓君, 马梁, 孙迎辉. 基于电催化析氧反应的硫化物催化剂研究进展[J]. 材料导报, 2021, 35(23): 23040-23049.
[4] 张中伟, 郭瑞堂, 秦阳, 郭德宇, 潘卫国. 金属有机框架材料在光催化还原CO2中的应用[J]. 材料导报, 2021, 35(21): 21058-21070.
[5] 于濂清, 杨钱龙, 朱海丰, 段丽杰, 赵兴雨, 王艳坤. 氢还原氢氟酸刻蚀的TiO2纳米薄膜光电化学性能[J]. 材料导报, 2021, 35(20): 20001-20004.
[6] 刘明浩, 宋武林, 卢照, 李明辉. 纳米二氧化钛固相载体研究进展[J]. 材料导报, 2021, 35(9): 9108-9114.
[7] 郭亚杰, 李帆, 郭栋, 张春瑞, 卢尚智. Ni(SxSe1-x)2纳米线阵列催化电极的制备与析氢性能[J]. 材料导报, 2020, 34(16): 16011-16015.
[8] 刘大波, 苏向东, 赵宏龙. 光催化分解水制氢催化剂的研究进展[J]. 材料导报, 2019, 33(Z2): 13-19.
[9] 郭亚杰, 叶锋, 郭栋, 李帆, 李志浩. 纳米混杂结构NiSe2高效析氢电极制备及其电化学性能[J]. 材料导报, 2018, 32(23): 4084-4088.
[10] 李旭力, 王晓静, 赵君, 李玉佩, 李发堂, 陈学敏. 催化分解水制氢体系助催化剂研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1057-1064.
[11] 夏艺萌, 吴帅, 谭丰, 李卫, 魏清茂, 闵春刚, 杨喜昆. 钴盐阴离子基团对Co-N-C催化剂电催化活性的影响[J]. 《材料导报》期刊社, 2018, 32(3): 362-367.
[12] 吕路强, 沈骏, 向路, 刘双翼, 谢雄, 周猛兵. 碳基纳米结构作为燃料电池催化剂载体的研究进展*[J]. 材料导报, 2017, 31(21): 9-18.
[13] 张静静, 孙 杰, 李吉刚, 周 添, 陈立泉. 用于CO低温氧化负载型纳米金催化剂研究进展[J]. 材料导报, 2017, 31(1): 136-142.
[14] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[15] 王小炼, 杨茂, 刘永辉, 张渝彬, 冯威. 非贵金属催化剂催化硼氢化钠水解制氢的研究进展[J]. 材料导报, 2021, 35(Z1): 21-28.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed