Effect of Hydroxylated Graphene on Properties of Fly Ash-Cement Matrix Composites
YUAN Xiaoya1,2,3,*, PU Yundong1, GUI Zunyao1, ZHANG Huiyi4, YANG Sen1, JIN Zhan3, CAO Weiqi3,5
1 School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China 2 Institute of Advanced Functional Materials, Chongqing Jiaotong University, Chongqing 400074, China 3 Chongqing 2D Materials Institute of China, Chongqing 400714, China 4 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China 5 Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, Department of Optoelectronic Engineering, Chongqing University, Chongqing 401331, China
Abstract: At present, graphene reinforced cement-based materials are the research focus in this field, but the dispersion of graphene is the key of this kind of research. Therefore, in this work, the influence of different amounts (0.01wt%, 0.03wt%, 0.05wt%, 0.07wt%, 0.09wt%) of hydroxy fossil graphene (HO-G) without carboxyl group on the workability, mechanical properties and durability of fly ash-cement system was stu-died. Compared with the fly ash-cement system, the fluidity test showed that HO-G has little effect on the fluidity of the fresh fly ash-cement mortar paste. The mechanical property test showed that HO-G can enhance the mechanical properties of the fly ash-cement mortar, especially when the content of HO-G is 0.03wt%, its 28 d flexural and compressive strength increases by 12.40% and 18.48%, respectively. The test results of sulfate corrosion resistance and chloride ion penetration resistance showed that the addition of HO-G can also improve the durability of the fly ash-cement mortar. The microscopic test showed that there is a synergistic effect between fly ash and HO-G. HO-G can accelerate the secondary hydration reaction of fly ash to promote the formation of more hydrated crystals in the fly ash-cement system. With its template effect, it can further regulate the growth mode of hydrated crystals and control the crystal arrangement structure, thus improving the microscopic morphology of fly ash-cement matrix.
1 Yang T, Zhu H, Zhang Z, et al. Cement and Concrete Research, 2018, 109, 198. 2 Şahmaran M, Yamani Ö, Tokyay M. Cement and Concrete Composites, 2009, 31(2), 99. 3 Kan L L, Shi R X, Zhu J. Construction and Building Materials, 2019, 209, 476. 4 Shehab H K, Eisa A S, Wahba A M. Construction and Building Mate-rials, 2016, 126, 560. 5 Yang J, Zeng L, He X, et al. Construction and Building Materials, 2021, 289, 123157. 6 Pastor J L, Ortega J M, Flor M, et al. Construction and Building Materials, 2016, 117, 47. 7 Rafieizonooz M, Mirza J, Salim M R, et al. Construction and Building Materials, 2016, 116, 15. 8 Sakai E, Miyahara S, Ohsawa S, et al. Cement and Concrete Research, 2005, 35(6), 1135. 9 Qian J, Shi C, Wang Z. Cement and Concrete Research, 2001, 31, 1121. 10 Goñi S, Guerrero A, Luxán M P, et al. Cement and Concrete Research, 2003, 33(9), 1399. 11 Hefni Y, Zaher Y A E, Wahab M A. Construction and Building Materials, 2018, 172, 728. 12 Li G. Cement and Concrete Research, 2004, 34(6), 1043. 13 Liu X, Ma B, Tan H, et al. Cement and Concrete Composites, 2020, 110, 103596. 14 Ma B, Li H, Li X, et al. Construction and Building Materials, 2016, 122, 242. 15 Park B, Choi Y C. Applied Sciences, 2021, 11(12), 5545. 16 Wei Z, Wang Y, Qi M, et al. Construction and Building Materials, 2021, 293, 123507. 17 Wang Q, Cui X, Wang J, et al. Construction and Building Materials, 2017, 138, 35. 18 Sharma S, Susan D, Kothiyal N C, et al. Construction and Building Materials, 2018, 177, 10. 19 Wang Q, Li S, Pan S, et al. Construction and Building Materials, 2019, 198, 106. 20 Zha L, Guo X, Song L, et al. Construction and Building Materials, 2020, 241, 117939. 21 Sheng K, Yang S, Bi J F, et al. Acta Materiae Compositae Sinica, 2022, 39(11), 5486 (in Chinese). 盛况, 杨森, 毕俊峰, 等. 复合材料学报, 2022, 39(11), 5486. 22 Wei Z Q, Wang Y G, Qi M, et al. Materials Reports, 2021, 35(10), 10042 (in Chinese). 魏致强, 王远贵, 齐孟, 等. 材料导报, 2021, 35(10), 10042. 23 Wang Y G, Yuan X Y, Gao J, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(11), 3453(in Chinese). 王远贵, 袁小亚, 高军, 等. 硅酸盐通报, 2020, 39(11), 3453. 24 Yang S, Jia W, Wang Y, et al. ACS Omega, 2021, 6(45), 30465. 25 GB/T 17671-2021, 水泥胶砂强度检验方法(ISO法). 国家市场监督管理总局;国家标准化管理委员会国建筑材料科学研究总院有限公司, 2021. 26 GB/T 2419-2005, 水泥胶砂流动度测定方法. 中华人民共和国国家质量监督检验检疫总局;中国标准出版社, 2005. 27 GB/T 50082-2009, 普通混凝土长期性能和耐久性能试验方法标准. 中国建筑科学研究院;中国标准出版社, 2009. 28 Cheng Z H, Yang S, Yuan X Y. Acta Materiae Compositae Sinica, 2021, 38(2), 339 (in Chinese). 程志海, 杨森, 袁小亚. 复合材料学报, 2021, 38(2), 339. 29 Lin Y, Du H. Construction and Building Materials, 2020, 265, 120312. 30 Pu Y D, Yang S, Qi M, et al. RSC Advances, 2022, 12(41), 26733. 31 Li G, Yuan J B, Zhang Y H, et al. Composites Part A: Applied Science and Manufacturing, 2018, 114, 188. 32 Ying J, Xi X. International Journal of Concrete Structures and Materials, 2022, 16(1), 8. 33 Zhang J W, Wang X, Li Z X, et al. New Chemical Materials, 2021, 49(6), 1 (in Chinese). 张建武, 汪潇, 李志新, 等. 化工新型材料, 2021, 49(6), 1. 34 Zhang X Z, Liu M L, Du X H, et al. Materials Reports, 2017, 31(12), 55. 张秀芝, 刘明乐, 杜笑寒, 等. 材料导报, 2017, 31(12), 55. 35 Li X, Liu Y M, Li W G, et al. Construction and Building Materials, 2017, 145, 402. 36 Lv S, Liu J, SunT, et al. Construction and Building Materials, 2014, 64, 231. 37 Zhao L, Guo X, Liu Y, et al. Construction and Building Materials, 2018, 190, 150. 38 Liu J, Li Q, Xu S. Journal of Materials in Civil Engineering, 2019, 31(4), 04019014. 39 Lv S, Hu H, Hou Y, et al. Nanomaterials (Basel), 2018, 8(12), 964. 40 Lv S H, Deng L J, Yang W Q, et al. Cement and Concrete Composites, 2016, 66, 1. 41 Lv S, Ma Y, Qiu C, et al. Construction and Building Materials, 2013, 49, 121. 42 Birenboim M, Nadiv R, Alatawna A, et al. Composites Part B: Enginee-ring, 2019, 161, 68. 43 Liu J, Fu J, Yang Y, et al. Construction and Building Materials, 2019, 199, 1.