Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 23020017-8    https://doi.org/10.11896/cldb.23020017
  无机非金属及其复合材料 |
羟基化石墨烯对粉煤灰-水泥基复合材料性能的影响
袁小亚1,2,3,*, 蒲云东1, 桂尊曜1, 张惠一4, 杨森1, 金湛3, 曹蔚琦3,5
1 重庆交通大学材料科学与工程学院,重庆 400074
2 重庆交通大学先进功能材料研究所,重庆 400074
3 重庆诺奖二维材料研究院,重庆 400714
4 重庆交通大学土木工程学院,重庆 400074
5 重庆大学光电工程学院,光电技术及系统教育部重点实验室,重庆 401331
Effect of Hydroxylated Graphene on Properties of Fly Ash-Cement Matrix Composites
YUAN Xiaoya1,2,3,*, PU Yundong1, GUI Zunyao1, ZHANG Huiyi4, YANG Sen1, JIN Zhan3, CAO Weiqi3,5
1 School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2 Institute of Advanced Functional Materials, Chongqing Jiaotong University, Chongqing 400074, China
3 Chongqing 2D Materials Institute of China, Chongqing 400714, China
4 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
5 Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, Department of Optoelectronic Engineering, Chongqing University, Chongqing 401331, China
下载:  全 文 ( PDF ) ( 19323KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯增强水泥基材料是目前该领域的研究热点,但石墨烯的分散性是该类研究的关键。因此,本工作采用不带羧基的羟基化石墨烯(HO-G)来研究不同掺量(0.01%、0.03%、0.05%、0.07%、0.09%,质量分数)对粉煤灰-水泥体系的工作性能、力学性能和耐久性的影响。与粉煤灰-水泥体系相比,流动度测试表明HO-G对粉煤灰-水泥砂浆新拌浆体流动度影响不大;力学性能测试表明,HO-G能增强粉煤灰-水泥砂浆的力学性能,尤其是当HO-G的掺量为0.03%时,其28 d抗折、抗压强度分别提高了12.40%和18.48%;耐硫酸盐腐蚀和抗氯离子渗透的测试结果表明,HO-G的加入还能改善粉煤灰-水泥砂浆的耐久性。微观测试表明,粉煤灰和HO-G之间存在协同效应,HO-G能加速粉煤灰的二次水化反应以促进粉煤灰-水泥体系中更多的水化晶体生成,且凭借其模板效应可进一步规整水化晶体的生长模式和调控晶体排列结构,从而改善粉煤灰-水泥基体的微观形貌。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁小亚
蒲云东
桂尊曜
张惠一
杨森
金湛
曹蔚琦
关键词:  羟基化石墨烯  水泥  粉煤灰  力学性能  耐久性    
Abstract: At present, graphene reinforced cement-based materials are the research focus in this field, but the dispersion of graphene is the key of this kind of research. Therefore, in this work, the influence of different amounts (0.01wt%, 0.03wt%, 0.05wt%, 0.07wt%, 0.09wt%) of hydroxy fossil graphene (HO-G) without carboxyl group on the workability, mechanical properties and durability of fly ash-cement system was stu-died. Compared with the fly ash-cement system, the fluidity test showed that HO-G has little effect on the fluidity of the fresh fly ash-cement mortar paste. The mechanical property test showed that HO-G can enhance the mechanical properties of the fly ash-cement mortar, especially when the content of HO-G is 0.03wt%, its 28 d flexural and compressive strength increases by 12.40% and 18.48%, respectively. The test results of sulfate corrosion resistance and chloride ion penetration resistance showed that the addition of HO-G can also improve the durability of the fly ash-cement mortar. The microscopic test showed that there is a synergistic effect between fly ash and HO-G. HO-G can accelerate the secondary hydration reaction of fly ash to promote the formation of more hydrated crystals in the fly ash-cement system. With its template effect, it can further regulate the growth mode of hydrated crystals and control the crystal arrangement structure, thus improving the microscopic morphology of fly ash-cement matrix.
Key words:  hydroxylated graphene    cement    fly ash    mechanical property    durability
发布日期:  2024-06-25
ZTFLH:  TU528  
基金资助: 国家自然科学基金项目(51402030);重庆市技术创新与应用发展专项重点项目(CSTB2022TIAD-KPX0031);重庆市级引导区县科技发展专项资金(JSYY2023010);重庆市研究生导师团队建设项目(JDDSTD2022006);重庆交通大学校企合作项目(cqjt-2022-036);重庆诺奖二维材料研究院科技项目(C2DMI-RD-230616-01)
通讯作者:  *袁小亚,博士,教授,重庆市高校中青年骨干教师、重庆交通大学优秀青年拔尖人才。2006 年毕业于南开大学,获高分子化学与物理专业博士学位,同年7月进入重庆交通大学工作至今。主要从事纳米复合材料、建筑功能材料、高性能水泥混凝土等领域的基础与应用研究。近五年主持/主研国家级、省部级等各类项目10 余项;在国内外高水平杂志发表学术论文50 多篇,其中SCI/EI 检索收录30 多篇。拥有国家发明专利6 项、实用新型专利1 项。曾获省部级奖励2项。yuanxy@cqjtu.edu.cn   
引用本文:    
袁小亚, 蒲云东, 桂尊曜, 张惠一, 杨森, 金湛, 曹蔚琦. 羟基化石墨烯对粉煤灰-水泥基复合材料性能的影响[J]. 材料导报, 2024, 38(11): 23020017-8.
YUAN Xiaoya, PU Yundong, GUI Zunyao, ZHANG Huiyi, YANG Sen, JIN Zhan, CAO Weiqi. Effect of Hydroxylated Graphene on Properties of Fly Ash-Cement Matrix Composites. Materials Reports, 2024, 38(11): 23020017-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020017  或          http://www.mater-rep.com/CN/Y2024/V38/I11/23020017
1 Yang T, Zhu H, Zhang Z, et al. Cement and Concrete Research, 2018, 109, 198.
2 Şahmaran M, Yamani Ö, Tokyay M. Cement and Concrete Composites, 2009, 31(2), 99.
3 Kan L L, Shi R X, Zhu J. Construction and Building Materials, 2019, 209, 476.
4 Shehab H K, Eisa A S, Wahba A M. Construction and Building Mate-rials, 2016, 126, 560.
5 Yang J, Zeng L, He X, et al. Construction and Building Materials, 2021, 289, 123157.
6 Pastor J L, Ortega J M, Flor M, et al. Construction and Building Materials, 2016, 117, 47.
7 Rafieizonooz M, Mirza J, Salim M R, et al. Construction and Building Materials, 2016, 116, 15.
8 Sakai E, Miyahara S, Ohsawa S, et al. Cement and Concrete Research, 2005, 35(6), 1135.
9 Qian J, Shi C, Wang Z. Cement and Concrete Research, 2001, 31, 1121.
10 Goñi S, Guerrero A, Luxán M P, et al. Cement and Concrete Research, 2003, 33(9), 1399.
11 Hefni Y, Zaher Y A E, Wahab M A. Construction and Building Materials, 2018, 172, 728.
12 Li G. Cement and Concrete Research, 2004, 34(6), 1043.
13 Liu X, Ma B, Tan H, et al. Cement and Concrete Composites, 2020, 110, 103596.
14 Ma B, Li H, Li X, et al. Construction and Building Materials, 2016, 122, 242.
15 Park B, Choi Y C. Applied Sciences, 2021, 11(12), 5545.
16 Wei Z, Wang Y, Qi M, et al. Construction and Building Materials, 2021, 293, 123507.
17 Wang Q, Cui X, Wang J, et al. Construction and Building Materials, 2017, 138, 35.
18 Sharma S, Susan D, Kothiyal N C, et al. Construction and Building Materials, 2018, 177, 10.
19 Wang Q, Li S, Pan S, et al. Construction and Building Materials, 2019, 198, 106.
20 Zha L, Guo X, Song L, et al. Construction and Building Materials, 2020, 241, 117939.
21 Sheng K, Yang S, Bi J F, et al. Acta Materiae Compositae Sinica, 2022, 39(11), 5486 (in Chinese).
盛况, 杨森, 毕俊峰, 等. 复合材料学报, 2022, 39(11), 5486.
22 Wei Z Q, Wang Y G, Qi M, et al. Materials Reports, 2021, 35(10), 10042 (in Chinese).
魏致强, 王远贵, 齐孟, 等. 材料导报, 2021, 35(10), 10042.
23 Wang Y G, Yuan X Y, Gao J, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(11), 3453(in Chinese).
王远贵, 袁小亚, 高军, 等. 硅酸盐通报, 2020, 39(11), 3453.
24 Yang S, Jia W, Wang Y, et al. ACS Omega, 2021, 6(45), 30465.
25 GB/T 17671-2021, 水泥胶砂强度检验方法(ISO法). 国家市场监督管理总局;国家标准化管理委员会国建筑材料科学研究总院有限公司, 2021.
26 GB/T 2419-2005, 水泥胶砂流动度测定方法. 中华人民共和国国家质量监督检验检疫总局;中国标准出版社, 2005.
27 GB/T 50082-2009, 普通混凝土长期性能和耐久性能试验方法标准. 中国建筑科学研究院;中国标准出版社, 2009.
28 Cheng Z H, Yang S, Yuan X Y. Acta Materiae Compositae Sinica, 2021, 38(2), 339 (in Chinese).
程志海, 杨森, 袁小亚. 复合材料学报, 2021, 38(2), 339.
29 Lin Y, Du H. Construction and Building Materials, 2020, 265, 120312.
30 Pu Y D, Yang S, Qi M, et al. RSC Advances, 2022, 12(41), 26733.
31 Li G, Yuan J B, Zhang Y H, et al. Composites Part A: Applied Science and Manufacturing, 2018, 114, 188.
32 Ying J, Xi X. International Journal of Concrete Structures and Materials, 2022, 16(1), 8.
33 Zhang J W, Wang X, Li Z X, et al. New Chemical Materials, 2021, 49(6), 1 (in Chinese).
张建武, 汪潇, 李志新, 等. 化工新型材料, 2021, 49(6), 1.
34 Zhang X Z, Liu M L, Du X H, et al. Materials Reports, 2017, 31(12), 55.
张秀芝, 刘明乐, 杜笑寒, 等. 材料导报, 2017, 31(12), 55.
35 Li X, Liu Y M, Li W G, et al. Construction and Building Materials, 2017, 145, 402.
36 Lv S, Liu J, SunT, et al. Construction and Building Materials, 2014, 64, 231.
37 Zhao L, Guo X, Liu Y, et al. Construction and Building Materials, 2018, 190, 150.
38 Liu J, Li Q, Xu S. Journal of Materials in Civil Engineering, 2019, 31(4), 04019014.
39 Lv S, Hu H, Hou Y, et al. Nanomaterials (Basel), 2018, 8(12), 964.
40 Lv S H, Deng L J, Yang W Q, et al. Cement and Concrete Composites, 2016, 66, 1.
41 Lv S, Ma Y, Qiu C, et al. Construction and Building Materials, 2013, 49, 121.
42 Birenboim M, Nadiv R, Alatawna A, et al. Composites Part B: Enginee-ring, 2019, 161, 68.
43 Liu J, Fu J, Yang Y, et al. Construction and Building Materials, 2019, 199, 1.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
[5] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[6] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[7] 唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
[8] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[9] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[10] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[11] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[12] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[13] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[14] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[15] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed