Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 23010135-8    https://doi.org/10.11896/cldb.23010135
  无机非金属及其复合材料 |
三维石墨烯-碳纳米管对超高性能混凝土机敏性能的影响
刘金涛, 崔娇伟, 周煜, 钱如胜, 孔德玉*
1 浙江工业大学土木工程学院,杭州 310023
2 浙江省工程结构与防灾减灾技术研究重点实验室,杭州 310023
Effect of Three-dimensional Graphene-Carbon Nanotubes on the Smart Performance of Ultra-high Performance Concrete
LIU Jintao, CUI Jiaowei, ZHOU Yu, QIAN Rusheng, KONG Deyu*
1 College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
2 Key Laboratory of Civil Engineering Structure & Disaster Prevention and Mitigation Technology of Zhejiang Province, Hangzhou 310023, China
下载:  全 文 ( PDF ) ( 18869KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作探索了掺加三维石墨烯-碳纳米管(Graphene-CNT,GC)的超高性能混凝土(Ultra-high performance concrete,UHPC)复合材料的机敏性能,基于四电极法分析了不同GC掺量、加载幅度、加载速度、温度和含水率对UHPC的电阻率变化规律的影响。研究结果表明:GC掺量对UHPC的28 d抗压强度影响不大;UHPC电阻率随着GC掺量的增加逐步降低,含有2.0% (质量分数,下同)GC的UHPC电阻率较R组下降了55.1%;UHPC试件电阻率随内部相对含水率的增加而降低,且二者存在线性关系;UHPC的电阻率随温度的升高而降低,电阻率的自然对数与绝对温度的倒数呈线性关系;UHPC电阻率变化率幅值随着加载幅度增大而增加,表现出良好的压敏特性,1.2%GC掺量下UHPC试件的压缩应力和应变灵敏系数分别达到0.2%/MPa和85.2。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘金涛
崔娇伟
周煜
钱如胜
孔德玉
关键词:  三维石墨烯-碳纳米管  超高性能混凝土  电阻率  压敏性能    
Abstract: Three-dimensional graphene-carbon nanotubes (Graphene-CNT, GC) were incorporated with ultra-high performance concrete (UHPC) in this work. The effects of GC content, loading amplitude, loading speed, temperature and water content on the resistivity variation pattern of UHPC were analyzed based on the four-electrode method. The results showed that the GC content has little effect on the 28 d compressive strength of UHPC. UHPC resistivity decrease gradually with the increase of GC content, and the resistivity of UHPC with 2.0wt%GC decreased by 55.1% compared with the control group. UHPC resistivity decreased with increasing internal relative water content, and there was a good linear relationship between relative water content and resistance. UHPC resistivity decreased with increasing temperature, and the natural logarithm of resistivity was linearly related to the inverse of the absolute temperature. The amplitude of resistivity change of UHPC increased with the increase of loading amplitude and showed excellent piezoelectric properties and electric conductivity. Moreover, the compressive stress and strain sensitivity coefficients of UHPC specimens with 1.2wt%GC reached 0.2%/MPa and 85.2, respectively.
Key words:  three-dimensional graphene-carbon nanotubes    UHPC    electrical resistivity    piezoresistivity
发布日期:  2024-06-25
ZTFLH:  TU528.58  
基金资助: 国家自然科学基金(52379136);浙江省大学生科技创新活动计划(新苗人才计划)(2022R403C092)
通讯作者:  *孔德玉,浙江工业大学土木工程学院教授。三次赴美国Northwestern University环境与土木系Prof.Shah 和Prof.Corr课题组进行访问学者合作研究。主要从事先进水泥基材料、混凝土材料与结构耐久性、工业废弃物资源化利用、低碳建材、建筑节能等方面工作。目前已承担包括国家自然科学基金、国家863计划重点项目课题子课题、“125科技支撑”计划项目课题子课题,省科技计划等国家级、省部级项目课题9项,参加多项国家自然科学基金和省部级项目,在国内外发表论文90多篇,其中在外文期刊上发表论文20余篇。在纳米改性高性能水泥基材料、高性能混凝土材料与结构耐久性、工业废弃物再生利用、绿色农房建设、建筑节能材料与应用等领域取得多项创新成果并实现产业化,取得了良好的经济效益。kongdeyu@zjut.edu.cn   
作者简介:  刘金涛,浙江工业大学副研究员、硕士研究生导师。2016年12月毕业于浙江大学,获结构工程博士学位。2017年1月加入浙江工业大学工作至今,主要从事超高性能混凝土、纳米改性水泥基复合材料特性研究。目前已承担国家自然科学基金项目1项、浙江省自然科学基金项目1项和多项横向项目,已在国内外学术期刊及学术会议上发表论文20余篇,获得发明专利授权4项。
引用本文:    
刘金涛, 崔娇伟, 周煜, 钱如胜, 孔德玉. 三维石墨烯-碳纳米管对超高性能混凝土机敏性能的影响[J]. 材料导报, 2024, 38(11): 23010135-8.
LIU Jintao, CUI Jiaowei, ZHOU Yu, QIAN Rusheng, KONG Deyu. Effect of Three-dimensional Graphene-Carbon Nanotubes on the Smart Performance of Ultra-high Performance Concrete. Materials Reports, 2024, 38(11): 23010135-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010135  或          http://www.mater-rep.com/CN/Y2024/V38/I11/23010135
1 Chiarello M, Zinno R. Cement and Concrete Composites, 2005, 27(4), 463.
2 Zhang W, Han B, Yu X, et al. Construction and Building Materials, 2018, 179, 186.
3 Wu Z, Khayat K H, Shi C, et al. Cement and Concrete Composites, 2021, 119, 103992.
4 Yu R, Spiesz P, Brouwers H J H. Construction and Building Materials, 2014, 65, 140.
5 Liu J T, Fu J L, Yang Y, et al. Construction and Building Materials, 2019, 199, 1.
6 Xie P, Gu P, Beaudoin J J. Journal of Materials Science, 1996, 31(15), 4093.
7 Shi T, Zhu M, Li Z X, et al. Acta Materiae Compositae Sinica, 2018, 35(5), 1033(in Chinese).
施韬, 朱敏, 李泽鑫, 等. 复合材料学报, 2018, 35(5), 1033.
8 Akbar A, Liew K M. Journal of Cleaner Production, 2020, 274, 1.
9 Shi Z Q, Chung D D L. Cement and Concrete Research, 1999, 29(3), 435.
10 Tian Z, Li Y, Zheng J J, et al. Composites Part B:Engineering, 2019, 177, 1.
11 Monteiro A O, Cachim P B, Costa P M F J. Cement and Concrete Composites, 2017, 81, 59.
12 Katsnelson M I. Materials Today, 2007, 10(1-2), 20.
13 E Silva R A, De Castro Guetti P, Da Luz M S, et al. Construction and Building Materials, 2017, 149, 378.
14 Sun M Q, Liu Q P, Li Z Q, et al. Cement and Concrete Research, 2000, 30(10), 1593.
15 Han B, Yu X, Ou J. Journal of Materials Science, 2010, 45(14), 3714.
16 Zuo J Q, Zou H, Yao W, et al. Materials Reports, 2017(22), 129 (in Chinese).
左俊卿, 周虹, 姚武, 等. 材料导报, 2017(22), 129.
17 Zhai S T, Pang B, Liu G J, et al. Construction and Building Materials, 2021, 275, 122119.
18 Zhang Y M, Yu L H. Concrete, 2016(2), 52 (in Chinese).
张苡铭, 俞乐华. 混凝土, 2016(2), 52.
19 Wang Y F, Zhao X H, Li G Y, et al. Materials Reports, 2017, 31(24), 6 (in Chinese).
王燕锋, 赵晓华, 李庚英, 等. 材料导报, 2017, 31(24), 6.
20 Parveen S, Rana S, Fangueiro R. Journal of Nanomaterials, 2013, 2013, 1
21 Li G Y, Wang P M, Zhao X H. Cement and Concrete Composites, 2007, 29(5), 377.
22 Yu X, Kwon E. Smart Materials and Structures, 2009, 18(5), 1.
23 Du H J, Pang S D. Springer International Publishing, 2015, 377.
24 Lu J, Feng Z G, Yao D D, et al. Materials Reports, 2020, 34(S1), 203 (in Chinese).
卢喆, 冯振刚, 姚冬冬, 等. 材料导报, 2020, 34(S1), 203.
25 Banthia N, Djeridane S, Pigeon M. Cement and Concrete Research, 1992, 22(5), 804.
26 Fiala L, Toman J, Vodička J, et al. Procedia Engineering, 2016, 151, 241.
27 Le H V, Lee D H, Kim D J. Sensors and Actuators A:Physical, 2020, 305, 111925.
28 Lee S H, Kim S, Yoo D Y. Construction and Building Materials, 2018, 185, 530.
29 Xu L, Bi H, Huang F Q, et al. Jorunal of Functional Materials, 2016, 47(Z2), 112 (in Chinese).
徐丽, 毕辉, 黄富强, 等. 功能材料, 2016, 47(Z2), 112.
30 Liu J T, Huang C W, Yang Y, et al. Acta Materiae Compositae Sinica, 2022, 39(1), 9 (in Chinese).
刘金涛, 黄存旺, 杨杨, 等. 复合材料学报, 2022, 39(1), 9.
31 Parveen S, Rana S, Fangueiro R. Journal of Nanomaterials, 2013, 2013, 1.
32 Wu Z, Shi C, He W, et al. Construction and Building Materials, 2016, 103, 8.
33 Ding Y N, Han Z B, Zhang Y L, et al. Composite Structures, 2016, 138, 184.
34 Demirciliolu E, Teomete E, Schlangen E, et al. Construction and Building Materials, 2019, 224, 420.
35 Liu X Y, Yao W, Wu K R. Journal of Hohai University:Natural Science Edition, 2007, 35(2), 3 (in Chinese).
刘小艳, 姚武, 吴科如. 河海大学学报:自然科学版, 2007, 35(2), 3.
36 Tang Z Q, Li Z Q, Xu D L. Journal of Wuhan University of Technology, 2001(3), 7 (in Chinese).
唐祖全, 李卓球, 徐东亮. 武汉理工大学学报, 2001(3), 7.
37 Spragg R, Villani C, Snyder K, et al. Transportation Research Record:Journal of the Transportation Research Board, 2013, 2342, 90.
38 Li S W. Study on interface bonding performance and pressure sensitivity of carbon fiber modified magnesium phosphate cement. Master's Thesis, Harbin:Harbin Institute of Technology, 2020 (in Chinese).
立树旺. 碳纤维改性磷酸镁水泥粘结性和压敏性研究. 硕士学位论文, 哈尔滨工业大学, 2020.
[1] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[2] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[3] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[4] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[5] 李少杰, 张云峰, 张玉令, 闫军, 杜仕国, 陈博. 纳米改性超高性能混凝土板在爆炸荷载下的动态响应试验研究[J]. 材料导报, 2024, 38(11): 22110130-9.
[6] 廖宜顺, 王思纯, 廖国胜, 梅军鹏, 陈迎雪. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9): 21100182-6.
[7] 宫经伟, 谢刚川, 秦灿, 晋强. 基于电阻率和ζ-电位法的低热硅酸盐水泥早期水化特性[J]. 材料导报, 2023, 37(4): 21050113-9.
[8] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[9] 吴琛, 储福玮, 龚明子, 曾志攀. 免蒸养超高性能混凝土-既有混凝土界面粘结性能试验研究[J]. 材料导报, 2023, 37(24): 23010119-8.
[10] 边晨, 郭君渊, 肖建庄, 赵长军. 纳米偏高岭土及细骨料对UHPC力学性能的影响[J]. 材料导报, 2023, 37(23): 22070261-5.
[11] 傅明利, 侯帅, 王磊, 展云鹏, 朱闻博, 贾利川, 黎小林, 陈潇, 徐曙. 高压电缆半导电屏蔽料研究进展及关键技术分析[J]. 材料导报, 2023, 37(21): 22010188-7.
[12] 郭柳君, 王凯, 王锦瑜, 胡仕梅, 余国庆. UHPC功能梯度湿接缝酸雨腐蚀断裂性能试验研究[J]. 材料导报, 2023, 37(19): 22040239-7.
[13] 周敏, 吴泽媚, 欧阳雪, 胡翔, 史才军. 组成及骨料特性对UHPC基体流动性和抗压强度的影响[J]. 材料导报, 2023, 37(18): 22060073-9.
[14] 袁明, 朱海乐, 颜东煌, 袁晟, 黄练, 刘昀. 钢纤维埋深与类型影响钢纤维-UHPC基体界面粘结性能的试验研究[J]. 材料导报, 2023, 37(16): 22010230-9.
[15] 吴应雄, 郑新颜, 黄伟, 郑祥浴, 陈宝春. 超高性能混凝土-既有普通混凝土界面粘结性能研究综述[J]. 材料导报, 2023, 37(16): 21120057-11.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed