Synthesis and Performance Enhancement Mechanis of BiOI/g-C3N4 Photocatalyst with High Activity
ZHU Jie1,2,3, LING Min1, MA Rundong1,2,3, WANG Ruifen1,2,3,*, AN Shengli1,2,3
1 School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China 2 Inner Mongolia Autonomous Region Key Laboratory of Advanced Ceramic Materials and Devices, Baotou 014010, Inner Mongolia, China 3 Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources, Ministry of Education, Baotou 014010, Inner Mongolia, China
Abstract: The synthesis of stable and efficient photocatalysts is the key of photocatalysis technology. Thiswork uses the situ deposition method to construct diverse mass ratio BiOI/CNx series of composite materials, which composited with BiOI doesn't influence the crystal structure of g-C3N4. In addition, the crystal form BiOI from composite products is closely adhered to the surface of lamellar g-C3N4. The introduction of BiOI obviously decreases band gap and availably increases the absorption of visible light. Meanwhile, the service life of photoproduction electron-holes gradually strengthens with the compound quantity of BiOI increasing. BiOI/CN15 has the strongest adsorption capacity and photocatalytic activity for RhB. Therefore, the absorption rate of g-C3N4 reached 55.15% under dark reaction for 30 minutes, which is 2.68 times than g-C3N4 in the same condition. The degradation rate of g-C3N4 was 87.69% at 10 minutes of photodegradation, which is 1.9 times than g-C3N4 in the same condition. The catalytic reaction rate constant is 5.551×10-2 min-1. And the degradation rate only decreased by 4.5% after five recycles, which owns good stability of photocatalyst. The combination of BiOI and g-C3N4 is beneficial to the effective separation of photogenic electron-holes pairs and the rapid transfer of electrons between interfaces. In the degradation of RhB by BiOI/CN15 composite photocatalyst, h+ and ·O2- are the main active substances.
通讯作者:
*王瑞芬,内蒙古科技大学材料与冶金学院副教授。2004年内蒙古科技大学化学教育专业本科毕业,2007年内蒙古大学物理化学专业硕士毕业后到内蒙古科技大学工作至今,2016年北京科技大学冶金工程专业博士毕业。目前主要从事光催化材料、稀土功能材料等方面的研究工作。发表论文40余篇,包括Journal of Rare Earths、Scientific Reports、Journal of Rare Earth等。jery19810528@126.com
1 Tian N, Huang H W, Wang S B, et al. Applied Catalysis B: Environmental, 2020, 267, 118697. 2 Xing F S, Liu Q W, Song M X, et al. ChemCatChem, 2018, 10(22), 5270. 3 Cao Y Y, Zhou G Z, Zhou R S, et al. Science of the Total Environment, 2020, 708, 134669. 4 Chen D, Zhang X Y, Chen H W, et al. Electrochimica Acta, 2021, 366, 137425. 5 Xing P, Zhou F, Zhan S. Environmental Research, 2021, 197, 111167. 6 Huang Y H, Wang K, Guo T, et al. Applied Catalysis B: Environmental, 2020, 277, 119232. 7 Yang Q, Li R J, Wei S Q, et al. Applied Surface Science, 2022, 572, 151525. 8 Song T, Yu X, Tian N, et al. International Journal of Hydrogen Energy, 2021, 2(46), 1857. 9 Du Y F, Ma R, Wang L Z, et al. Science of the Total Environment, 2022, 838, 156166. 10 Vinoth S, Rajaitha P M, Pandikumar A. New Journal of Chemistry, 2021, 45(4), 2010. 11 Groenewolt M, Antonietti M. Advanced Materials, 2005, 17(14), 1789. 12 Song T, Yu X, Tian N, et al. International Journal of Hydrogen Energy, 2021, 46(2), 1857. 13 Yuan Y J, Shen Z K, Wang P, et al. Applied Catalysis B, Environmental, 2020, 260, 118179. 14 Tonda S, Kandula S, Kandula S, et al. Journal of Materials Chemistry A, 2014, 2, 6772. 15 Wang Q, Li Y P, Huang L Y, et al. Applied Surface Science, 2019, 497, 143753. 16 Xiang Q J, Yu J G, Jaroniec M. Journal of Physical Chemistry C, 2011, 115(15), 7355. 17 Dong F, Sun Y J, Ho W K, et al. Dalton Trans, 2012, 41(27), 8270. 18 He R A, Cheng K Y, Wei Z M, et al. Journal of Materials Research, 2018, 33(2), 201. 19 Chen C R, Wang X D, Wang S L, et al. ChemistrySelect, 2020, 5(47), 15084. 20 Zhang A C, Li C W, Xing W B, et al. Applied Surface Science, 2018, 433, 914. 21 Che H N, Che G B, Dong H J, et al. Applied Surface Science, 2018, 455, 705. 22 Chen P F, Chen L, Ge S F, et al. International Journal of Hydrogen Energy, 2020, 45(28), 14354. 23 Hu X N, Zhang Y, Wang B J, et al. Applied Catalysis B, Environmental, 2019, 256, 117789. 24 Li M H, Wu Y H, Gu E Y, et al. Journal of Alloys and Compounds, 2022, 914, 165339. 25 Khan M A, Mutahir S, Wang F Y, et al. Journal of Photochemistry and Photobiology A, Chemistry, 2018, 364, 826. 26 Matos J, Laine J, Herrmann J-M. Applied Catalysis B, Environmental, 1998, 18(3-4), 281. 27 Duan Z Y, Feng X Y, Chen L M. Journal of Solid State Chemistry, 2020, 286, 121298. 28 Xiong Y, Zhang C, Duan M, et al. Langmuir, 2021, 37(25), 7655. 29 Wang Y, Wang D D, Li H J, et al. Journal of Materials Science, 2021, 56(9), 5555. 30 Hu J Y, Zhai C Y, Gao H F, et al. Sustainable Energy & Fuels, 2019, 3(2), 439.