Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 23010115-7    https://doi.org/10.11896/cldb.23010115
  无机非金属及其复合材料 |
高活性BiOI/g-C3N4光催化剂的合成及性能提高机制
朱杰1,2,3, 凌敏1, 马润东1,2,3, 王瑞芬1,2,3,*, 安胜利1,2,3
1 内蒙古科技大学材料与冶金学院,内蒙古 包头 014010
2 内蒙古自治区先进陶瓷材料与器件重点实验室,内蒙古 包头 014010
3 轻稀土资源绿色提取与高效利用教育部重点实验室,内蒙古 包头 014010
Synthesis and Performance Enhancement Mechanis of BiOI/g-C3N4 Photocatalyst with High Activity
ZHU Jie1,2,3, LING Min1, MA Rundong1,2,3, WANG Ruifen1,2,3,*, AN Shengli1,2,3
1 School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
2 Inner Mongolia Autonomous Region Key Laboratory of Advanced Ceramic Materials and Devices, Baotou 014010, Inner Mongolia, China
3 Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources, Ministry of Education, Baotou 014010, Inner Mongolia, China
下载:  全 文 ( PDF ) ( 26223KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 稳定高效光催化剂的合成是光催化技术的关键。本工作采用原位沉积法构建了不同质量比的BiOI/CNx复合材料。结果表明,与BiOI的复合未影响g-C3N4的晶体结构,复合产物中晶型BiOI紧密附着在片层g-C3N4表面,BiOI的引入使禁带宽度明显减小,对可见光的吸收能力也显著增强,BiOI/CNx中光生电子-空穴的寿命随BiOI复合量的增加而逐渐延长。BiOI/CN15对罗丹明(RhB)具有最强的吸附能力和光催化活性,暗反应30 min时的吸附率达到55.15%,为同等条件下g-C3N4的2.68倍;光降解10 min时的降解率为87.69%,是相同条件下g-C3N4的1.9倍;其催化反应速率常数为5.551×10-2 min-1,循环使用五次后降解率仅下降4.5%,具有良好的光催化稳定性。BiOI与g-C3N4复合后有利于光生电子空穴对的有效分离和电子在界面之间的快速转移,在BiOI/CN15复合光催化剂降解RhB的过程中,h+和·O2-是主要发挥作用的活性物质。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱杰
凌敏
马润东
王瑞芬
安胜利
关键词:  石墨相氮化碳  碘氧化铋  原位沉积法  光催化活性  寿命  动力学    
Abstract: The synthesis of stable and efficient photocatalysts is the key of photocatalysis technology. Thiswork uses the situ deposition method to construct diverse mass ratio BiOI/CNx series of composite materials, which composited with BiOI doesn't influence the crystal structure of g-C3N4. In addition, the crystal form BiOI from composite products is closely adhered to the surface of lamellar g-C3N4. The introduction of BiOI obviously decreases band gap and availably increases the absorption of visible light. Meanwhile, the service life of photoproduction electron-holes gradually strengthens with the compound quantity of BiOI increasing. BiOI/CN15 has the strongest adsorption capacity and photocatalytic activity for RhB. Therefore, the absorption rate of g-C3N4 reached 55.15% under dark reaction for 30 minutes, which is 2.68 times than g-C3N4 in the same condition. The degradation rate of g-C3N4 was 87.69% at 10 minutes of photodegradation, which is 1.9 times than g-C3N4 in the same condition. The catalytic reaction rate constant is 5.551×10-2 min-1. And the degradation rate only decreased by 4.5% after five recycles, which owns good stability of photocatalyst. The combination of BiOI and g-C3N4 is beneficial to the effective separation of photogenic electron-holes pairs and the rapid transfer of electrons between interfaces. In the degradation of RhB by BiOI/CN15 composite photocatalyst, h+ and ·O2- are the main active substances.
Key words:  graphite phase carbon nitride    bismuth iodide oxide    in-situ deposition    photocatalytic activity    lifetime    dynamics
发布日期:  2024-06-25
ZTFLH:  X592  
基金资助: 内蒙古自治区自然科学基金(2020MS02025)
通讯作者:  *王瑞芬,内蒙古科技大学材料与冶金学院副教授。2004年内蒙古科技大学化学教育专业本科毕业,2007年内蒙古大学物理化学专业硕士毕业后到内蒙古科技大学工作至今,2016年北京科技大学冶金工程专业博士毕业。目前主要从事光催化材料、稀土功能材料等方面的研究工作。发表论文40余篇,包括Journal of Rare Earths、Scientific Reports、Journal of Rare Earth等。jery19810528@126.com   
作者简介:  朱杰,2021年6月于河北科技大学理工学院获得工学学士学位。现为内蒙古科技大学材料与冶金学院硕士研究生,在王瑞芬副教授的指导下进行研究。目前主要研究领域为光催化材料。
引用本文:    
朱杰, 凌敏, 马润东, 王瑞芬, 安胜利. 高活性BiOI/g-C3N4光催化剂的合成及性能提高机制[J]. 材料导报, 2024, 38(11): 23010115-7.
ZHU Jie, LING Min, MA Rundong, WANG Ruifen, AN Shengli. Synthesis and Performance Enhancement Mechanis of BiOI/g-C3N4 Photocatalyst with High Activity. Materials Reports, 2024, 38(11): 23010115-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010115  或          http://www.mater-rep.com/CN/Y2024/V38/I11/23010115
1 Tian N, Huang H W, Wang S B, et al. Applied Catalysis B: Environmental, 2020, 267, 118697.
2 Xing F S, Liu Q W, Song M X, et al. ChemCatChem, 2018, 10(22), 5270.
3 Cao Y Y, Zhou G Z, Zhou R S, et al. Science of the Total Environment, 2020, 708, 134669.
4 Chen D, Zhang X Y, Chen H W, et al. Electrochimica Acta, 2021, 366, 137425.
5 Xing P, Zhou F, Zhan S. Environmental Research, 2021, 197, 111167.
6 Huang Y H, Wang K, Guo T, et al. Applied Catalysis B: Environmental, 2020, 277, 119232.
7 Yang Q, Li R J, Wei S Q, et al. Applied Surface Science, 2022, 572, 151525.
8 Song T, Yu X, Tian N, et al. International Journal of Hydrogen Energy, 2021, 2(46), 1857.
9 Du Y F, Ma R, Wang L Z, et al. Science of the Total Environment, 2022, 838, 156166.
10 Vinoth S, Rajaitha P M, Pandikumar A. New Journal of Chemistry, 2021, 45(4), 2010.
11 Groenewolt M, Antonietti M. Advanced Materials, 2005, 17(14), 1789.
12 Song T, Yu X, Tian N, et al. International Journal of Hydrogen Energy, 2021, 46(2), 1857.
13 Yuan Y J, Shen Z K, Wang P, et al. Applied Catalysis B, Environmental, 2020, 260, 118179.
14 Tonda S, Kandula S, Kandula S, et al. Journal of Materials Chemistry A, 2014, 2, 6772.
15 Wang Q, Li Y P, Huang L Y, et al. Applied Surface Science, 2019, 497, 143753.
16 Xiang Q J, Yu J G, Jaroniec M. Journal of Physical Chemistry C, 2011, 115(15), 7355.
17 Dong F, Sun Y J, Ho W K, et al. Dalton Trans, 2012, 41(27), 8270.
18 He R A, Cheng K Y, Wei Z M, et al. Journal of Materials Research, 2018, 33(2), 201.
19 Chen C R, Wang X D, Wang S L, et al. ChemistrySelect, 2020, 5(47), 15084.
20 Zhang A C, Li C W, Xing W B, et al. Applied Surface Science, 2018, 433, 914.
21 Che H N, Che G B, Dong H J, et al. Applied Surface Science, 2018, 455, 705.
22 Chen P F, Chen L, Ge S F, et al. International Journal of Hydrogen Energy, 2020, 45(28), 14354.
23 Hu X N, Zhang Y, Wang B J, et al. Applied Catalysis B, Environmental, 2019, 256, 117789.
24 Li M H, Wu Y H, Gu E Y, et al. Journal of Alloys and Compounds, 2022, 914, 165339.
25 Khan M A, Mutahir S, Wang F Y, et al. Journal of Photochemistry and Photobiology A, Chemistry, 2018, 364, 826.
26 Matos J, Laine J, Herrmann J-M. Applied Catalysis B, Environmental, 1998, 18(3-4), 281.
27 Duan Z Y, Feng X Y, Chen L M. Journal of Solid State Chemistry, 2020, 286, 121298.
28 Xiong Y, Zhang C, Duan M, et al. Langmuir, 2021, 37(25), 7655.
29 Wang Y, Wang D D, Li H J, et al. Journal of Materials Science, 2021, 56(9), 5555.
30 Hu J Y, Zhai C Y, Gao H F, et al. Sustainable Energy & Fuels, 2019, 3(2), 439.
[1] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[2] 杨志强, 王振, 黄法礼, 易忠来, 蒋金洋. 纳米氧化铝提升海洋环境高速铁路桥梁混凝土结构服役寿命研究[J]. 材料导报, 2024, 38(7): 22060232-8.
[3] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[4] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[5] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[6] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[7] 靳红华, 任青阳, 肖宋强, 任小坤. 模拟酸雨侵蚀环境下悬臂抗滑桩耐久性极限寿命预测[J]. 材料导报, 2024, 38(5): 22070148-8.
[8] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[9] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[10] 王万祯. Q460C钢缺口板的疲劳裂纹萌生寿命计算模型和总疲劳寿命计算[J]. 材料导报, 2024, 38(4): 23010056-8.
[11] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[12] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[13] 董昊良, 李化建, 杨志强, 温家馨, 黄法礼, 王振, 易忠来. 混凝土冻融破坏机理及寿命预测方法[J]. 材料导报, 2024, 38(2): 22070123-11.
[14] 于巧玲, 刘成宝, 金涛, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. CuS/CQDs/g-C3N4复合材料的合成及光催化性能[J]. 材料导报, 2024, 38(11): 22090279-7.
[15] 王哲昊, 吕绪明. 等离子喷涂技术在工程陶瓷涂层制备中的应用现状及展望[J]. 材料导报, 2024, 38(11): 23110033-10.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed