Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22080236-5    https://doi.org/10.11896/cldb.22080236
  无机非金属及其复合材料 |
高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究
王雪怡1, 王智远1, 余伟2, 周冰鑫2, 徐榕2, 杨兴东3, 何辉超2,*, 贾碧2,*
1 重庆科技学院化学与化工学院,重庆 401331
2 重庆科技学院冶金与材料工程学院,重庆 401331
3 重庆国际复合材料股份有限公司,重庆 400037
Preparation of La Doped TiO2 Photocatalyst by High Pressure Assisted Sol-Gel Method and Its Visible Light Degradation of Methyl Orange
WANG Xueyi1, WANG Zhiyuan1, YU Wei2, ZHOU Bingxin2, XU Rong2, YANG Xingdong3, HE Huichao2,*, JIA Bi2,*
1 School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
2 School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
3 Chongqing International Composite Material Company Limited, Chongqing 400037, China
下载:  全 文 ( PDF ) ( 12973KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 根据溶胶-凝胶法和水热法制备TiO2的优点和不足,本工作提出了一种高压辅助溶胶-凝胶法(简称HG法)可控地制备La掺杂TiO2。通过该方法,可以高效制备锐钛矿相La掺杂TiO2,且制得样品纯度高,分散性好。通过控制La掺杂比例(0.05%、0.10%、0.15%、0.20%、0.25%,质量分数,下同),可以调控TiO2禁带宽度变化(3.15~2.80 eV);其中,0.20%La掺杂TiO2(0.20%La-TiO2)的禁带宽度可达2.80 eV。甲基橙(MO)光催化降解实验结果表明,0.20%La-TiO2的光催化活性优异,其在可见光照射下160 min内对MO的降解率可达92%,是本征TiO2的38.30倍;·O2-是驱动0.20%La-TiO2光催化降解MO的主要活性物质。本工作提出的高压辅助溶胶-凝胶法可为制备高活性TiO2基光催化剂提供有益的方法及条件参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王雪怡
王智远
余伟
周冰鑫
徐榕
杨兴东
何辉超
贾碧
关键词:  光催化活性  La掺杂TiO2  锐钛矿相  高压辅助溶胶-凝胶法    
Abstract: Based on the advantages and disadvantages of the sol-gel method and hydrothermal method in TiO2 preparation, a high pressure assisted sol-gel method was developed for the controllable preparation of La doped TiO2. Anatase La doped TiO2 with high purity and good dispersion was successfully prepared by this method. By the control of La doping ratios (0.05%, 0.10%, 0.15%, 0.20%, 0.25%), the band gap of La doped TiO2 can be adjusted in a range of 3.15—2.80 eV, and the 0.20%La doped TiO2 (0.20%La-TiO2) had a narrowest band gap of 2.80 eV. The photocatalytic experiments of methyl orange (MO) degradation showed that 0.20%La-TiO2 has higher photocatalytic activity than the others La doped TiO2 and the pristine TiO2. In the 0.20%La-TiO2-based reaction system, the degradation rate of MO under visible light irradiation could reach 92% within 160 min. The photocatalytic activity of 0.20%La-TiO2 is 38.30 times higher than that of the pristine TiO2. The as-developed high pressure assisted sol-gel method in the present work could provide a useful method and condition reference for the preparation of highly active TiO2-based photocatalysts.
Key words:  photocatalytic activity    La doped TiO2    anatase    high pressure assisted sol-gel process
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  O643.3  
基金资助: 重庆科技学院科研项目经费 (ckrc2022003)
通讯作者:  *贾碧,重庆科技学院冶金与材料工程学院教授,重庆科技学院环境能源材料与智能装备研究院常务副院长、硕士研究生导师;主要从事先进陶瓷材料与器件,光催化污水处理智能装备研发工作。近年来,主持和承担包括国家 “863”项目子课题、重庆市科委重点项目在内的等各级科研课题20余项;公开发表科研论文50余篇;获授权发明专利7项和实用新型专利18项;主持完成科研成果转化项目100余项。18696617359@163.com
何辉超,重庆科技学院冶金与材料工程学院副教授、硕士研究生导师。2014年重庆大学化学工程与技术专业博士毕业,主要从事光催化环境净化材料及绿氢制取催化材料研究。近年来,主持承担各级纵向研究课题10余项,以第一作者或通信作者身份发表论文40余篇,包括Advanced Functional Materials、ACS Catalysis、Green Chemistry、Journal of Materials Chemistry A、Journal of Physical Chemistry Letters、Chemical Communications等;获授权发明专利4项。hehuichao@cqust.edu.cn   
作者简介:  王雪怡,重庆科技学院在读硕士研究生,主要从事光催化降解污水研究。
引用本文:    
王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
WANG Xueyi, WANG Zhiyuan, YU Wei, ZHOU Bingxin, XU Rong, YANG Xingdong, HE Huichao, JIA Bi. Preparation of La Doped TiO2 Photocatalyst by High Pressure Assisted Sol-Gel Method and Its Visible Light Degradation of Methyl Orange. Materials Reports, 2024, 38(2): 22080236-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080236  或          http://www.mater-rep.com/CN/Y2024/V38/I2/22080236
1 Olga S, Vincenzo V. Cleaner Production, 2018, 175, 38.
2 Sun S J, Qiao L. Hazardous Materials, 2008, 155, 312.
3 An C L, Rong H L. Materials Chemistry and Physics, 2008, 109, 275.
4 Stengl N V′, Snejana B J. Materials Chemistry and Physics, 2009, 114, 217.
5 Hao L Q, Guo B G. Materials Chemistry and Physics, 2008, 112, 346.
6 Fu H T, Gong M L, Ning X Y, et al. Powder Technology, 2020, 376, 593.
7 Choi W, Termin A, Hoffmann M. Journal of Physical Chemistry A, 1994, 98, 13669.
8 Bargiela P, Cavalcante F, Lopes S M R, et al. Chemical Engineering Science, 2020, 227, 115939.
9 Tieng S, Kanaev A, Chhor K. Applied Catalysis A:General, 2011, 399, 191.
10 Cacho C, Geiss O, Barrero-Moreno J, et al. Journal of Photochemistry and Photobiology A:Chemistry, 2011, 222, 304.
11 Cho E C, Ciou J H, Hsiao Y S, et al. Applied Surface Science, 2015, 355, 536.
12 Wang Y P, Li J, Peng P Y, et al. Applied Surface Science, 2008, 254, 5276.
13 Kang I C, Zhang Q W, Yin S, et al. Applied Catalysis B:Environmental, 2008, 84, 570.
14 Cao X J, Yang X Y, Li H, et al. Construction and Building Materials, 2017, 148, 824.
15 Mazierski P, Roy J, Mikolajczyk A, et al. Applied Surface Science, 2021, 536, 147805.
16 Zhang J, Xu L J, Zhu Z Q, et al. Materials Research Bulletin, 2015, 70, 358.
17 Zhou W Y, He Y C. Chemical Engineering Journal, 2012, 179, 412.
18 Xie Y B, Yuan C W, Li X Z. Colloids and Surfaces A, 2005, 252, 87.
19 Meksi M, Turki A, Kochkar H, et al. Applied Catalysis B:Environmental, 2016, 181, 651.
20 Yuan S, Sheng Q R, Zhang J L, et al. Microporous and Mesoporous Materials, 2005, 79, 93.
21 Pascariu P, Cojocaru C, Homocianu M, et al. Ceramics International, 2022, 48, 4593.
22 Chen W, Hua D, Tian Y J, et al. Transactions of Nonferrous Metals So-ciety of China, 2006, 16, 728.
23 Dimitrios Berk H K. Journal of Sol-gel Science and Technology, 2013, 68, 180.
24 Lin Y, Lu C, Wei C Y. Journal of Alloys and Compounds, 2019, 781, 56.
25 Sian W R, Lintang H O, Yuliati L. Catalysis Science & Technology, 2017, 1, 159.
26 Sun J J, Li X Y, Zhao Q D, et al. Materials Chemistry A, 2015, 3, 21655.
27 Yu L, Yang X F, He J, et al. Journal of Alloys and Compounds, 2015, 637, 308.
28 Zhou X, Zhang X N, Feng X B, et al. Dyes and Pigments, 2016, 125, 375.
29 Lu J, Li L H, Wang Z S, et al. Materials Letters, 2013, 94, 147.
30 Qian S W, Wang Z Y, Wang M Q. Journal of Materials Science and Engineering, 2003, 21(1), 48(in Chinese).
钱斯文, 王智宇, 王民权. 材料科学与工程学报, 2003, 21(1), 48.
[1] 李雅明, 李艳军, 张江, 丛野, 崔正威, 袁观明, 董志军, 邹涛, 李轩科. K3V5O14的合成及光催化性能和吸附性能[J]. 材料导报, 2019, 33(12): 1926-1931.
[2] 李嘉伟, 李大玉, 顾熠鑫, 肖金坤, 张超, 张燕军. 热喷涂制备二氧化钛涂层中锐钛矿相调控的研究进展*[J]. 《材料导报》期刊社, 2017, 31(3): 26-31.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed