Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22090003-6    https://doi.org/10.11896/cldb.22090003
  金属与金属基复合材料 |
Ag-CuO-NiO-LiAlSiO4复合钎料空气反应钎焊GH3128/Al2O3接头组织及性能
陈恩光1, 苏新清1,*, 薛松柏1, 陈旭东2, 傅仁利1, 张笑天1, 程波1, 王长虹3, 王明伟3
1 南京航空航天大学材料科学与技术学院,南京 211106
2 上海无线电设备研究所,上海 200090
3 中国电子科技集团公司第四十九研究所,哈尔滨 150000
Microstructure and Properties of GH3128/Al2O3 Joint Brazed via Reactive Air Brazing with Ag-CuO-NiO-LiAlSiO4 Composite Filler
CHEN Enguang1, SU Xinqing1,*, XUE Songbai1, CHEN Xudong2, FU Renli1, ZHANG Xiaotian1, CHENG Bo1, WANG Changhong3, WANG Mingwei3
1 College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2 Shanghai Radio Equipment Research Institute, Shanghai 200090, China
3 The 49th Institute of China Electronics Technology Group Corporation, Harbin 150000, China
下载:  全 文 ( PDF ) ( 13009KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以Ag-CuO-NiO-LiAlSiO4复合钎料对GH3128高温合金与Al2O3陶瓷进行空气反应钎焊(RAB)连接,研究了NiO和LiAlSiO4添加量对钎焊接头显微结构和力学性能的影响,分析了接头的界面微观结构及其形成机制。结果表明,钎焊过程中,GH3128合金表面生成了包括CuCrO4内氧化层和NiO外氧化层的复合氧化反应层,Al2O3陶瓷表面生成了以CuAl2O4为主要成分的界面层。NiO的添加明显改善了复合钎料在合金侧的润湿性,而锂霞石(LiAlSiO4)的添加减小了钎缝与母材间的热失配,极大地改善了键合接头的连接性能。最终,使用含0.3%NiO(质量分数)和4%LiAlSiO4(质量分数)的Ag-10%CuO复合钎料钎焊GH3128合金和Al2O3陶瓷,获得了61.8 MPa的最大剪切强度。此时,接头界面结构为GH3128/CuCrO4+CrNi3+NiO+CuO/Ag+CuO+LiAlSiO4/CuAl2O4/Al2O3
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈恩光
苏新清
薛松柏
陈旭东
傅仁利
张笑天
程波
王长虹
王明伟
关键词:  空气反应钎焊  氧化铝陶瓷  GH3128合金  复合钎料  界面组织  力学性能    
Abstract: Reactive air brazing(RAB) of Al2O3 ceramic and GH3128 alloy was successfully achieved by using Ag-CuO-NiO-LiAlSiO4 composite filler reinforced by NiO and LiAlSiO4 particles. The effects of NiO and LiAlSiO4 content on the microstructure and the mechanical properties of GH3128/Al2O3 joint were investigated. The interface microstructure and the formation mechanism of the brazed joint were analyzed and discussed either. The results show that a composite oxidation reaction layer including CuCrO4 inner oxide layer and NiO outer oxide layer is formed on the surface of GH3128 alloy, and the interfacial layer with CuAl2O4 as the main component is formed on the surface of Al2O3 ceramic in the brazing process. The addition of NiO improves the wettability of the composite solder. Meanwhile, the addition of LiAlSiO4 reduces the coefficient of thermal expansion of the composite filler metal, the filler metal with low coefficient of thermal expansion can reduce the residual stress of the brazed joint, which greatly improve the performance of the joints. The shear strength of the joint reaches the maximum (61.8 MPa) when Ag-10%CuO composite filler metal containing 0.3%NiO(mass fraction) and 4%LiAlSiO4(mass fraction) is used. The typical interfacial microstructure of the joint is GH3128/CuCrO4+CrNi3+NiO+CuO/Ag+CuO+LiAlSiO4/CuAl2O4/Al2O3.
Key words:  reactive air brazing    aluminium oxide ceramic    GH3128 alloy    composite filler    interfacial microstructure    mechanical property
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TG454  
通讯作者:  *苏新清,南京航空航天大学材料科学与技术学院副教授、硕士研究生导师,主要研究领域为聚合物基复合材料的高性能化,金属与陶瓷材料的焊接以及MLCC陶瓷浆料的稳定性等。在国内外学术刊物上发表论文20余篇,SCI收录10余篇,授权发明专利3项。sxq_msc@nuaa.edu.cn   
作者简介:  陈恩光,2020年6月毕业于河南科技大学,获得工学学士学位。现为南京航空航天大学材料科学与技术学院硕士研究生,在傅仁利教授的指导下主要从事微电子封装领域的研究。
引用本文:    
陈恩光, 苏新清, 薛松柏, 陈旭东, 傅仁利, 张笑天, 程波, 王长虹, 王明伟. Ag-CuO-NiO-LiAlSiO4复合钎料空气反应钎焊GH3128/Al2O3接头组织及性能[J]. 材料导报, 2024, 38(2): 22090003-6.
CHEN Enguang, SU Xinqing, XUE Songbai, CHEN Xudong, FU Renli, ZHANG Xiaotian, CHENG Bo, WANG Changhong, WANG Mingwei. Microstructure and Properties of GH3128/Al2O3 Joint Brazed via Reactive Air Brazing with Ag-CuO-NiO-LiAlSiO4 Composite Filler. Materials Reports, 2024, 38(2): 22090003-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22090003  或          https://www.mater-rep.com/CN/Y2024/V38/I2/22090003
1 Esposito L, Bellosi A, Guicciardi S, etal. Journal of Materials Science, 1998, 33(7), 1827.
2 Yu X Q, Ma Z P, Zhang Y, et al. Ordnance Materials Science and Engineering, 2021, 44(1), 7(in Chinese).
于心泷, 马志鹏, 张妍, 等. 兵器材料科学与工程, 2021, 44(1), 7.
3 Bai J, Yang X, Xu S, et al. Scripta Materialia, 2013, 68(6), 393.
4 Sang S, Li D, Wang C, et al. Materials Science and Engineering A, 2019, 768, 138431.
5 Feng Z W, Gao T F, Shao T W, et al. Transactions of the China Welding Institution, 2015, 36(12), 105(in Chinese).
冯贞伟, 高腾飞, 邵天威, 等. 焊接学报, 2015, 36(12), 105.
6 Li Z M, Qian S Q, Wang W, et al. Rare Metal Materials and Enginee-ring, 2012, 41(11), 1980(in Chinese).
李志明, 钱士强, 王伟, 等. 稀有金属材料与工程, 2012, 41(11), 1980.
7 Wang Z Q, Cao J, Si X Q, et al. 2018, 10(1), 1(in Chinese).
王志权, 曹健, 司晓庆, 等. 精密成形工程, 2018, 10(1), 1.
8 Zhang L X, Lei M, Yang Z Y, et al. Rare Metal Materials and Enginee-ring, 2017, 46(11), 6(in Chinese).
张丽霞, 雷敏, 杨智烨, 等. 稀有金属材料与工程, 2017, 46(11), 6.
9 Ji Y R, Fu R L, Lv J L, et al. Ceramics International, 2020, 46(8), 12806.
10 Chen H, Ren X, Guo W, et al. Journal of Manufacturing Processes, 2020, 56, 735.
11 Lv J L, Huang Y L, Fu R L, et al. Journal of the European Ceramic Society, 2020, 40( 15), 5332.
12 Luo Y, Song X G, Hu S P, et al. Journal of the European Ceramic Society, 2021, 41, 1407.
13 Kim M D, Wahid Muhamad F R, Raju K, et al. Journal of the Korean Ceramic Society, 2018, 55(5), 492.
14 Zhao W, Zhang S, Yang J, et al. Journal of Materials Research and Technology, 2021, 10, 1158.
15 Luo Y, Hu S P, Li Z H, et al. Journal of Mechanical Engineering, 2020, 56(6), 7(in Chinese).
罗云, 胡胜鹏, 李子寒, 等. 机械工程学报, 2020, 56(6), 7
16 Wang T, Sun M, Li H, et al. Journal of Physics: Conference Series, 2021, 2125(1), 012071.
17 Zhang J, Liu J Y, Wang T P. Journal of Materials Science & Technology, 2018, 34(4), 713.
18 Zhang S, Yuan Y, Su Y, et al. Journal of Alloys and Compounds, 2017, 719, 108.
19 Chen H Y, Wang X C, Fu L, et al. Vacuum, 2018, 156, 256.
20 Shi Keshun. Journal of the Chinese Ceramic Society, 2009, 37(5), 682.
21 Qian Q, Liu X K, Wang L L, et al. The World of Building Materials, 2022, 43(2), 4(in Chinese).
钱潜, 刘小康, 王路路, 等. 建材世界, 2022, 43(2), 4.
22 Zhang W. Acta Mineralogica Sinica, 2016, 36(1), 80(in Chinese).
张巍. 矿物学报, 2016, 36(1), 80.
23 Yang R C, Lyu X F, Zhao L M, et al. Journal of Lanzhou University of Technology, 2006, 32(6), 16(in Chinese).
杨瑞成, 吕学飞, 赵丽美, 等. 兰州理工大学学报, 2006, 32(6), 16.
24 Gui X Y, Zhang M F, Xu P H, et al. Journal of the European Ceramic Society, 2022, 42, 432.
25 Eustathopoulos N. Acta Materialia, 1998, 46(7), 2319.
26 Xue Y H, Jiang J B, Zhang H, et al. Materials Reports, 2020, 34(5), 10(in Chinese).
薛耀辉, 蒋军彪, 张辉, 等. 材料导报, 2020, 34(5), 10.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[11] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[12] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[13] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[14] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[15] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed