Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22090049-7    https://doi.org/10.11896/cldb.22090049
  高分子与聚合物基复合材料 |
磺酸钙/油酸改性碳基二硫化钼的制备及在乳化油中的摩擦学性能
晁昀暄1,2, 戴乐阳1,2,*, 魏钰坤1,2, 王永坚1,2, 杜金洪3
1 集美大学轮机工程学院,福建省船舶与海洋工程重点实验室,福建 厦门 361021
2 厦门市海洋腐蚀与智能防护材料重点实验室,福建 厦门 361021
3 中交上航(福建)交通建设工程有限公司,福建 厦门 361028
Preparation of Calcium Sulfonate/OA Modified Carbon Based Molybdenum Disulfide and Its Tribological Properties in Emulsified Oil
CHAO Yunxuan1,2, DAI Leyang1,2,*, WEI Yukun1,2, WANG Yongjian1,2, DU Jinhong3
1 Fujian Provincial Key Laboratory of Naval Architecture and Ocean Engineering,School of Marine Engineering, Jimei University, Xiamen 361021, Fujian, China
2 Xiamen Key Laboratory of Marine Corrosion and Smart Protective Materials, Xiamen 361021, Fujian, China
3 CCCC SDC(Fujian)Communication Construction Engineering Co., Ltd., Xiamen 361028, Fujian, China
下载:  全 文 ( PDF ) ( 24111KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究MoS2/C复合粉体的改性及其对乳化油润滑性能的影响,以膨胀石墨和MoS2为原料、油酸和高碱值磺酸钙为修饰剂,通过等离子体辅助球磨原位完成粉体的制备及改性,利用扫描电镜、透射电镜、拉曼光谱及红外光谱仪对粉体进行表征。结果表明:等离子体辅助球磨20 h后,在等离子体的热爆协同作用下,膨胀石墨被不断剪切剥离形成了近石墨烯片层结构,部分MoS2被细化为20 nm左右的鳞片状,部分MoS2由于热爆飞溅到石墨层上并冷凝形成石墨烯包覆的球状结构,这些MoS2微粒均匀附着在碳基石墨片层上;同时,在辅助球磨过程中,油酸中的羧基与膨胀石墨和磺酸钙的羟基基团发生酯化反应,完成对粉体的表面改性,粉体具有较大的亲油化度值,并可抑制MoS2/C的氧化。将制备的改性MoS2/C添加在乳化油中进行摩擦学性能测试,发现改性后的MoS2/C沉积吸附在表面磨痕上,同时在摩擦副表面生成一层硫酸/磺酸盐化学膜,有效抑制了水分对MoS2/C减摩自修复性能的影响,使乳化油保持良好的润滑性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
晁昀暄
戴乐阳
魏钰坤
王永坚
杜金洪
关键词:  碳基二硫化钼  磺酸钙  等离子体辅助球磨  乳化油  摩擦学性能    
Abstract: In order to study the modification of MoS2/C composite powder and its effect on the lubricating performance of emulsified oil, the powder was prepared and modified in situ by plasma assisted ball milling with expanded graphite and MoS2 as raw materials, oleic acid and high alkali calcium sulfonate as modifiers. The powder was characterized by scanning electron microscope, transmission electron microscope, Raman spectrum and infrared spectrometer. The results show that after 20 h of plasma assisted ball milling, under the synergistic effect of plasma thermal explosion, the expanded graphite is continuously sheared and peeled off to form a near graphene lamellar structure, part of MoS2 is refined into a flake shape of about 20 nm, and part of MoS2 splashes onto the graphite layer due to thermal explosion and forms a graphene coated spherical structure due to cold condensation. These MoS2 particles are uniformly attached to the carbon based ink lamellar layer. At the same time, during the ball milling process, the carboxyl group in oleic acid reacts with the hydroxyl group of expanded graphite and calcium sulfonate to complete the surface modification of the powder. The powder has a large degree of lipophilicity and can inhibit the oxidation of MoS2/C. The prepared modified MoS2/C was added to the emulsified oil for tribological performance test. It was found that the modified MoS2/C was deposited and adsorbed on the surface wear marks, and a layer of sulfuric acid/sulfonate chemical film was formed on the surface of the friction pair, which effectively suppressed the influence of water on the friction reduction and self-healing performance of MoS2/C and kept the emulsified oil with good lubricating performance.
Key words:  carbon based molybdenum disulfide    calcium sulfonate    plasma assisted ball milling    emulsified oil    tribological property
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TB383  
基金资助: 国家自然科学基金(52372361);福建省自然科学基金(2021J01848;2020J01687)
通讯作者:  *戴乐阳,集美大学轮机工程学院教授、博士研究生导师。1994年本科毕业于大连理工大学,1999年硕士毕业于大连海事大学,2006年于华南理工大学材料加工工程专业取得博士学位,毕业后在集美大学任教至今。主要研究方向为轮机摩擦磨损预防与控制、海洋腐蚀与防护、轮机故障诊断等。在国内外学术期刊发表论文40余篇,包括Acta Metallurgica Sinica、Tribology Letters等,授权国家发明专利8项。daileyang@jmu.edu.cn   
作者简介:  晁昀暄,2019年本科毕业于武汉理工大学,现为集美大学轮机工程学院硕士研究生,主要从事纳米复合润滑添加剂在轮机工程领域的研究。
引用本文:    
晁昀暄, 戴乐阳, 魏钰坤, 王永坚, 杜金洪. 磺酸钙/油酸改性碳基二硫化钼的制备及在乳化油中的摩擦学性能[J]. 材料导报, 2024, 38(2): 22090049-7.
CHAO Yunxuan, DAI Leyang, WEI Yukun, WANG Yongjian, DU Jinhong. Preparation of Calcium Sulfonate/OA Modified Carbon Based Molybdenum Disulfide and Its Tribological Properties in Emulsified Oil. Materials Reports, 2024, 38(2): 22090049-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22090049  或          https://www.mater-rep.com/CN/Y2024/V38/I2/22090049
1 Zhou Y B, Ma G L, Zhang J. Lubricating Oil, 2017, 32(2), 36(in Chinese).
周亚斌, 马国梁, 张继勇. 润滑油, 2017, 32(2), 36.
2 Wu S Y, Jin L, Qian Y. China Ship Repair, 2017, 30(2), 10(in Chinese).
吴善跃, 金兰, 钱怡. 中国修船, 2017, 30(2), 10
3 Liu W M. Tribology, 2003(4), 265(in Chinese).
刘维民. 摩擦学学报, 2003(4), 265.
4 Wang F F, Tan G, Ding H Y, et al. Materials Letters, 2021, 297, 129981.
5 Wu Y L, Erik D V, Emile V D H. Tribology International, 2021, 157, 106875.
6 Liu L C, Zhou M, Jin M, et al. Friction, 2019, 7(3), 199.
7 Hu K H, Xu Y, Xu Y F, et al. Tribology, 2015, 35(2), 167(in Chinese)
胡坤宏, 徐勇, 徐玉福, 等. 摩擦学学报, 2015, 35(2), 167.
8 Li H, Li X, Wang L P, et al. Tribology, 2016, 36(6), 708(in Chinese).
李浩, 李霞, 王立平, 等. 摩擦学学报, 2016, 36(6), 708.
9 Jin B, Zhao J, He Y Y, et al. Chemical Engineering Journal, 2022, 168, 135620.
10 Pranav D S, Rakesh S, Chandra S S B, et al. Tribology International, 2022, 175, 107434.
11 Yang Y S, Fan X Q, Yue Z F. Applied Surface Science, 2022, 598, 153845.
12 Yang K M, Yuan J S, Zhang Y B, et al. Progree in Organic Coating, 2022, 173, 107183.
13 Qin J, Liu T X, Wang J, et al. Chemical Industry and Engineering Progress, 2022, 41(9), 4973(in Chinese).
秦建, 刘天霞, 王建, 等. 化工进展, 2022, 41(9), 4973.
14 戴乐阳, 孟荣刚, 陈景锋, 等. 中国专利, ZL201410068071. 5, 2015.
15 Leroux F, Campagne C, Perwuelz A, et al. Journal of Colloid and Interface Science, 2008, 328(2), 412.
16 Liu Y H, Zeng M Q, Zhu M, et al. Materials Reports, 2022, 36(15), 170(in Chinese).
刘员环, 曾美琴, 朱敏, 等. 材料导报, 2022, 36(15), 170.
17 Yan J, Dai L Y, Meng R G, et al. Tribology, 2016, 36(1), 20(in Chinese).
闫锦, 戴乐阳, 孟荣刚, 等. 摩擦学学报, 2016, 36(1), 20.
18 Wei Y K, Liao H F, Dai L Y, et al. Materials Reports, 2020, 34(14), 14039(in Chinese).
魏钰坤, 廖海峰, 戴乐阳, 等. 材料导报, 2020, 34(14), 14039.
19 Chen Y C, Xie T, Liu Z. China Sciencepaper, 2015, 10(22), 2674(in Chinese).
陈一忱, 谢天, 刘钊. 中国科技论文, 2015, 10(22), 2674.
20 Liu L J, Liu Y F, et al. Lubrication Engineering, 2022, 47(1), 172(in Chinese).
刘丽君, 刘玉峰, 等. 润滑与密封, 2022, 47(1), 172.
21 Li H X, Guo R. Lubricating Oil, 2019, 34(1), 27(in Chinese)
李贺新, 郭然. 润滑油, 2019, 34(1), 27.
22 Wang X Z, Wang H B, Liu X M, et al. Journal of Inorganic Materials, 2017, 32(8), 813(in Chinese).
王学政, 王海滨, 刘雪梅, 等. 无机材料学报, 2017, 32(8), 813.
23 Zhu M, Lu Z C, Hu R Z, et al. Acta Metallurgica Sinica, 2016, 52(10), 1239(in Chinese).
朱敏, 鲁忠臣, 胡仁宗, 等. 金属学报, 2016, 52(10), 1239
24 Wang C W, Huang J F, Li J Y, et al. Applied Surface Science, 2022, 584, 152620.
25 Wu J X, Xu H, Zhang J. Acta Chimica Sinica, 2014, 72(3), 301(in Chinese).
吴娟霞, 徐华, 张锦. 化学学报, 2014, 72(3), 301.
26 Liliya V F, Aaron H, Sanjiv K J, et al. Carbon, 2015, 81, 216.
27 Zhang L L, Pu J B, Xue Q J, et al. Tribology, 2015, 35(6), 746(in Chinese).
张丽丽, 蒲吉斌, 薛群基, 等. 摩擦学学报, 2015, 35(6), 746.
28 Guo J Y, Wei Y K, Dai L Y, et al. Materials Reports, 2021, 35(20), 20011(in Chinese).
郭竟尧, 魏钰坤, 戴乐阳, 等. 材料导报, 2021, 35(20), 20011.
29 Xu J Q. Preparation and application of sulfonated porous yeast carbon microspheres. Master’s Thesis, Chang’an University, China, 2020(in Chinese).
徐嘉圻. 表面磺酸基化多孔酵母碳微球的制备及其应用研究. 硕士学位论文, 长安大学, 2020.
30 Yan X Y, Yang Z Q, Wang R Z, et al. Tribology International, 2022, 87, 107925.
31 Guo Y X, Qiao D, Han Y Y, et al. Tribology, 2017, 37(2), 167(in Chinese).
郭月霞, 乔旦, 韩云燕, 等. 摩擦学学报, 2017, 37(2), 167.
32 Dong R, Wei D Q, Liu W M, et al. Tribology, 2022, 42(2), 482(in Chinese).
董瑞, 危得全, 刘维民, 等. 摩擦学学报, 2022, 42(2), 482.
33 Hu K H, Xu Y, Hu E Z, et al. Tribology International, 2016, 104, 131.
34 Ba Z W, Huang G D, Qiao D, et al. Tribology, 2019, 39(2), 140(in Chinese).
巴召文, 黄国威, 乔旦, 等. 摩擦学学报, 2019, 39(2), 140.
35 Chen Z M, Qiu Y S. China Petroleum Processing Petrochemical Technology, 2002(8), 48(in Chinese).
陈子明, 仇延生. 石油炼制与化工, 2002(8), 48.
[1] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[2] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[3] 谢晓明, 沈鹰, 刘秀波, 朱正兴, 李明曦. Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响[J]. 材料导报, 2024, 38(23): 23120066-9.
[4] 何东青, 冯子涵, 郑文文, 李文生, 尚伦霖. Cr3C2-NiCr/AlCrN复合涂层高温摩擦学行为研究[J]. 材料导报, 2024, 38(21): 23060112-7.
[5] 操慧珺, 李韦承, 张天刚, 张宏伟, 张志强. TC4表面WC/Ni-MoS2钛基复合涂层组织与摩擦学性能[J]. 材料导报, 2024, 38(15): 24020099-8.
[6] 王慧鹏, 李鹏, 王喜茂, 郭伟玲, 马国政, 王海斗. 冷喷涂温度对Cu-Ti3AlC2复合涂层微观组织及摩擦学性能的影响[J]. 材料导报, 2024, 38(15): 23030288-9.
[7] 杨长兴, 王固霞, 郭生伟. 油酸改性石墨相氮化碳的制备、表征及摩擦学性能研究[J]. 材料导报, 2023, 37(23): 22100019-7.
[8] 王整, 蔡召兵, 陈飞寰, 董颖辉, 张坡, 陈娟, 古乐, 曾良才. 环境和法向载荷对(TiVCrAlMo)N高熵合金薄膜摩擦学性能的影响[J]. 材料导报, 2023, 37(18): 22050049-7.
[9] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[10] 熊光耀, 李圣鑫, 李波, 沈明学. 面向低温环境的聚合物摩擦学性能及其改性研究进展[J]. 材料导报, 2022, 36(3): 20070001-6.
[11] 霍丽霞, 苟世宁, 郭芳君, 贺颖, 冯凯, 周晖, 张凯锋. 溶胶-凝胶法制备聚酰胺-酰亚胺粘结MoS2/SiOx固体润滑涂层及其真空摩擦学性能研究[J]. 材料导报, 2022, 36(22): 22050078-5.
[12] 杨文涛, 何鹏飞, 刘明, 周永欣, 王海斗, 白宇, 李青. 热处理工艺对铝硅合金显微组织和性能影响的研究现状[J]. 材料导报, 2022, 36(11): 20080038-9.
[13] 郭竟尧, 侯显斌, 魏钰坤, 戴乐阳, 廖海峰, 孙迪. 纳米偏硼酸钙/还原石墨烯润滑添加剂的制备及摩擦学性能[J]. 材料导报, 2021, 35(20): 20011-20015.
[14] 王永欣, 胡艺纹, 赵海超, 李金龙, 王春婷, 毛金明, 王立平, 薛群基. 石墨烯基水润滑添加剂研究进展[J]. 材料导报, 2021, 35(19): 19055-19061.
[15] 魏钰坤, 廖海峰, 颜海涛, 吴小乐, 戴乐阳. 介质阻挡放电等离子体辅助球磨对纳米TiO2粉体的表面改性[J]. 材料导报, 2020, 34(14): 14039-14044.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed