Research Progress on Fission Gas Behavior of Nuclear Fuels
QIAN Zhengyu1, YAN Dong1, YUN Di1,2,*
1 School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China 2 State Key Laboratory of Multi-phase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Abstract: Fission gas behavior of nuclear fuels is one of the most critical factors affecting the performance of nuclear fuels. Fission gas mainly refers to the inert gas generated during fission process inside nuclear fuels, and these gases are relatively stable, insoluble in the fuel matrix, and mostly remain in the fuel in a gaseous state. Fission gas stored in the fuel material matrix will cause the fuel to swell, and the released fission gas will affect thermal conductivity of the gap between the fuel and cladding and internal pressure of the gas plenum, and either way these gases will threaten fuel safety. Therefore, it is of great significance to study fission gas behaviors. So far, relevant research activities on the behaviors of fission gas have been carried out for more than 60 years, and researchers have obtained a profound understanding of the behaviors of fission gas, developed a complete set of fission gas behavior theories, including fission generation, bubble nucleation, bubble coalescence, bubble migration, gas atom resolution and fission gas release. Such theory has been widely used in the performance analysis of nuclear fuels, making great contributions to nuclear fuel design. This paper summarizes various peculiar fission gas behaviors in the fission gas behavior theory, explains the causes and processes of each fission gas behavior in detail, introduces unique fission gas behaviors of different types of nuclear fuels, including empirical models and mechanistic models of different nuclear fuels, and finally, summarizes the focus of current fission gas behaviors research.
1 Wang X, Wu J C, Pu L. Nuclear Science and Engineering, 2022, 42(2), 241(in Chinese). 王鑫, 吴继承, 朴磊. 核科学与工程, 2022, 42(2), 241. 2 Yuan H, Wang G, Yu R, et al. Frontiers in Energy Research, 2021, 9, 705944. 3 Zheng Y Q, Wu H C. Nuclear Power Engineering, 2014, 35(S2), 41(in Chinese). 郑友琦, 吴宏春. 核动力工程, 2014, 35(S2), 41. 4 Zhou Z, Zhou Y, Zhang W, et al. Nuclear Science and Engineering, 2021, 41(4), 798(in Chinese). 周舟, 周勇, 张伟, 等. 核科学与工程, 2021, 41(4), 798. 5 Olander D R. Fundamental aspects of nuclear reactor fuel elements: solutions to problems. University of California, Berkeley Press, USA, 1976, pp.299. 6 Hofman G L, Pahl R G, Lahm C E, et al. Metallurgical Transactions A, 1990, 21, 517. 7 Kim Y S. In:Comprehensive Nuclear Materials, Konings R J M, ed. , Elsevier, UK, 2012, pp.391. 8 Kim Y S, Hofman G L, Rest J, et al. Characterization of intergranular fission gas bubbles in U-Mo fuel. Argonne National Lab, USA, 2008, pp.3. 9 Booth A H. A method of calculating fission gas diffusion from UO2 fuel and its application to the X-2-f loop test. Atomic Energy of Canada Limi-ted, Canada, 1957, pp.496. 10 Turnbull J A. Journal of Nuclear Materials, 1971, 38, 203. 11 Olander D R, Wongsawaeng D. Journal of Nuclear Materials, 2006, 354, 94. 12 Turnbull J A, Cornell R M. Journal of Nuclear Materials, 1971, 41(2), 156. 13 Nelson R S. Journal of Nuclear Materials, 1968, 25, 227. 14 Rest J, Cooper M W D, Spino J, et al. Journal of Nuclear Materials, 2019, 513, 310. 15 Speight M V. Nuclear Science and Engineering, 1969, 37, 180. 16 Millett P C. Computational Materials Science, 2012, 53, 31. 17 Aagesen L K, Schwen D, Tonks M R, et al. Computational Materials Science, 2019, 161, 35. 18 Arai Y. In:Comprehensive Nuclear Materials, Konings R J M, ed. , Elsevier, UK, 2012, pp.41. 19 Lewis B J. Journal of Nuclear Materials, 1987, 148, 28. 20 TanakaK, Maeda K, Katsuyama K, et al. Journal of Nuclear Materials, 2004, 327, 77. 21 Saliba-Silva A M, Durazzo M, de Carvalho E F U, et al. In:Materials Science Forum. Trans Tech Publications Ltd, 2008, pp.194. 22 Birtcher R C, Richardson J W, Mueller M H. Journal of Nuclear Materials, 1997, 244, 251. 23 Grest G S, Cohen M H. Advances in Chemical Physics, 1981, 1, 455. 24 Kim Y S, Hofman G L, Rest J, et al. Journal of Nuclear Materials, 2009, 389, 443. 25 Kim Y S, Hofman G L. Journal of Nuclear Materials, 2011, 410, 1. 26 Snelgrove J L, Domagala R F, Hofman G L, et al. The use of U3Si2 dispersed in aluminum in plate-type fuel elements for research and test reactors. Argonne National Lab, USA, 1987, pp.44. 27 Carmack W J, Porter D L, Chang Y I, et al. Journal of Nuclear Materials, 2009, 392, 139. 28 Ogata T. In:Comprehensive Nuclear Materials, Konings R J M, ed., Elsevier, UK, 2012, pp.1. 29 Rest J. Journal of Nuclear Materials, 1993, 207, 192. 30 Hofman G L, Kim Y S. Nuclear Engineering and Technology, 2005, 37, 299. 31 Qian Z Y, Xie X, Fu Y, et al. Journal of Nuclear Materials, 2022, 564, 153665. 32 Jue J F, Park B H, Clark C R, et al. Nuclear Technology, 2010, 172, 204. 33 Devaraj A, Kautz E, Kovarik L, et al. Scripta Materialia, 2018, 156, 70. 34 Reymann G A. Matpro-version 10: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior, Idaho National Engineering Lab, USA, 1978, pp.149. 35 Storms E K. Journal of Nuclear Materials, 1988, 158, 119. 36 Ross S B, El-Genk M S, Matthews R B. Journal of Nuclear Materials, 1990, 170(2), 169. 37 Metzger K E, Knight T W, Williamson R L. Model of U3Si2 fuel system using BISON fuel code. Idaho National Lab, USA, 2014, pp.3. 38 Gamble K A L, Williamson R L, Schwen D, et al. BISON and MARMOT development for modeling fast reactor fuel performance. Idaho National Lab, USA, 2015, pp.9. 39 Rest J, Zawadzki S A. FASTGRASS: A mechanistic model for the prediction of Xe, I, Cs, Te, Ba, and Sr release from nuclear fuel under normal and severe-accident conditions. Argonne National Lab, USA, 1992, pp.1. 40 Qian Z, Liu W, Yu R, et al. Journal of Nuclear Materials, 2021, 556, 153188. 41 Miao Y B, Gamble K A, Andersson D, et al. Nuclear Engineering and Design, 2017, 322, 336. 42 Yun D, Rest J, Hofman G L, et al. Journal of Nuclear Materials, 2013, 435, 153. 43 Ye B, Rest J, Yun D. Transactions of the American Nuclear Society, 2012, 106, 1292. 44 Ronchi C. Journal of Nuclear Materials, 1972, 45, 15. 45 Forsberg K, Massih A R. Journal of Nuclear Materials, 1985, 135, 140. 46 Veshchunov M S, Ozrin V D, Shestak V E, et al. Nuclear Engineering and Design, 2006, 236, 179. 47 Tonks M, Andersson D, Devanathan R, et al. Journal of Nuclear Mate-rials, 2018, 504, 300. 48 Noirot J, Desgranges L, Lamontagne J. Journal of Nuclear Materials, 2008, 372, 318.