Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22090311-10    https://doi.org/10.11896/cldb.22090311
  无机非金属及其复合材料 |
核燃料裂变气体行为研究进展
钱郑宇1, 严冬1, 恽迪1,2,*
1 西安交通大学能源与动力工程学院,西安 710049
2 西安交通大学动力工程多相流国家重点实验室,西安 710049
Research Progress on Fission Gas Behavior of Nuclear Fuels
QIAN Zhengyu1, YAN Dong1, YUN Di1,2,*
1 School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
2 State Key Laboratory of Multi-phase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
下载:  全 文 ( PDF ) ( 18095KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 核燃料裂变气体行为是影响核燃料性能最为关键的因素之一。裂变气体是核燃料在裂变过程中产生的惰性气体,性质较为稳定,但其不溶于燃料基体,多以气体形式存留在燃料内。存留在燃料基体内的裂变气体会造成燃料肿胀,而从基体中释放到气腔的裂变气体会影响燃料和包壳间气隙的热导率和气压。无论是造成肿胀还是影响热导率和气压都会对核燃料的安全造成威胁,因此对裂变气体行为的研究具有重要意义。
迄今为止,对裂变气体行为的相关研究开展了60余年,研究人员对裂变气体行为有了相当深刻的认识,并开发了包括裂变产生、气泡形核、气泡聚合、气泡迁移、气体原子重溶和最终裂变气体释放的一套完整的裂变气体行为理论体系,这套理论体系被广泛应用于核燃料性能分析中,为核燃料设计与性能模拟做出了极大的贡献。
本文总结了裂变气体行为理论中多种具体的裂变气体行为,详细地阐述了裂变气体各种具体行为的产生原因及过程,同时针对不同类型核燃料独有的裂变气体行为进行了汇总,归纳了用于不同核燃料裂变气体行为的经验性和机理性模型,最后总结了现今裂变气体行为方向的研究重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钱郑宇
严冬
恽迪
关键词:  核燃料  裂变气体行为  陶瓷燃料  金属燃料    
Abstract: Fission gas behavior of nuclear fuels is one of the most critical factors affecting the performance of nuclear fuels. Fission gas mainly refers to the inert gas generated during fission process inside nuclear fuels, and these gases are relatively stable, insoluble in the fuel matrix, and mostly remain in the fuel in a gaseous state. Fission gas stored in the fuel material matrix will cause the fuel to swell, and the released fission gas will affect thermal conductivity of the gap between the fuel and cladding and internal pressure of the gas plenum, and either way these gases will threaten fuel safety. Therefore, it is of great significance to study fission gas behaviors.
So far, relevant research activities on the behaviors of fission gas have been carried out for more than 60 years, and researchers have obtained a profound understanding of the behaviors of fission gas, developed a complete set of fission gas behavior theories, including fission generation, bubble nucleation, bubble coalescence, bubble migration, gas atom resolution and fission gas release. Such theory has been widely used in the performance analysis of nuclear fuels, making great contributions to nuclear fuel design.
This paper summarizes various peculiar fission gas behaviors in the fission gas behavior theory, explains the causes and processes of each fission gas behavior in detail, introduces unique fission gas behaviors of different types of nuclear fuels, including empirical models and mechanistic models of different nuclear fuels, and finally, summarizes the focus of current fission gas behaviors research.
Key words:  nuclear fuels    fission gas behaviors    ceramic fuel    metallic fuel
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TL352  
基金资助: 2019及2020年度西安交通大学中核领创基金
通讯作者:  *恽迪,西安交通大学教授、博士研究生导师。2001年本科毕业于清华大学工程物理系,2010年5月获美国伊利诺伊大学香槟分校博士学位。2010年6月—2015年8月担任美国阿贡国家实验室工程师。曾任知名期刊 Materials 核材料专刊客座编辑。2015年9月起归国就任于西安交通大学核科学与技术学院,入选2017年国家海外高层次人才引进计划、2017年陕西省百人计划等。主要从事核能相关的研究工作,研究方向涉及核燃料与材料的实验表征、事故容错核燃料开发以及核燃料性能仿真、裂变气体行为分析等,发表SCI论文40余篇。diyun1979@xjtu.edu.cn   
作者简介:  钱郑宇,2018年6月于华北电力大学获得工学学士学位。现为西安交通大学能源与动力工程学院博士研究生,在恽迪教授的指导下进行研究。目前主要研究领域为核燃料性能分析、核燃料裂变气体行为研究及多尺度模拟,目前在领域内知名期刊 Journal of Nuclear Materials 发表论文2篇。
引用本文:    
钱郑宇, 严冬, 恽迪. 核燃料裂变气体行为研究进展[J]. 材料导报, 2024, 38(2): 22090311-10.
QIAN Zhengyu, YAN Dong, YUN Di. Research Progress on Fission Gas Behavior of Nuclear Fuels. Materials Reports, 2024, 38(2): 22090311-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22090311  或          https://www.mater-rep.com/CN/Y2024/V38/I2/22090311
1 Wang X, Wu J C, Pu L. Nuclear Science and Engineering, 2022, 42(2), 241(in Chinese).
王鑫, 吴继承, 朴磊. 核科学与工程, 2022, 42(2), 241.
2 Yuan H, Wang G, Yu R, et al. Frontiers in Energy Research, 2021, 9, 705944.
3 Zheng Y Q, Wu H C. Nuclear Power Engineering, 2014, 35(S2), 41(in Chinese).
郑友琦, 吴宏春. 核动力工程, 2014, 35(S2), 41.
4 Zhou Z, Zhou Y, Zhang W, et al. Nuclear Science and Engineering, 2021, 41(4), 798(in Chinese).
周舟, 周勇, 张伟, 等. 核科学与工程, 2021, 41(4), 798.
5 Olander D R. Fundamental aspects of nuclear reactor fuel elements: solutions to problems. University of California, Berkeley Press, USA, 1976, pp.299.
6 Hofman G L, Pahl R G, Lahm C E, et al. Metallurgical Transactions A, 1990, 21, 517.
7 Kim Y S. In:Comprehensive Nuclear Materials, Konings R J M, ed. , Elsevier, UK, 2012, pp.391.
8 Kim Y S, Hofman G L, Rest J, et al. Characterization of intergranular fission gas bubbles in U-Mo fuel. Argonne National Lab, USA, 2008, pp.3.
9 Booth A H. A method of calculating fission gas diffusion from UO2 fuel and its application to the X-2-f loop test. Atomic Energy of Canada Limi-ted, Canada, 1957, pp.496.
10 Turnbull J A. Journal of Nuclear Materials, 1971, 38, 203.
11 Olander D R, Wongsawaeng D. Journal of Nuclear Materials, 2006, 354, 94.
12 Turnbull J A, Cornell R M. Journal of Nuclear Materials, 1971, 41(2), 156.
13 Nelson R S. Journal of Nuclear Materials, 1968, 25, 227.
14 Rest J, Cooper M W D, Spino J, et al. Journal of Nuclear Materials, 2019, 513, 310.
15 Speight M V. Nuclear Science and Engineering, 1969, 37, 180.
16 Millett P C. Computational Materials Science, 2012, 53, 31.
17 Aagesen L K, Schwen D, Tonks M R, et al. Computational Materials Science, 2019, 161, 35.
18 Arai Y. In:Comprehensive Nuclear Materials, Konings R J M, ed. , Elsevier, UK, 2012, pp.41.
19 Lewis B J. Journal of Nuclear Materials, 1987, 148, 28.
20 TanakaK, Maeda K, Katsuyama K, et al. Journal of Nuclear Materials, 2004, 327, 77.
21 Saliba-Silva A M, Durazzo M, de Carvalho E F U, et al. In:Materials Science Forum. Trans Tech Publications Ltd, 2008, pp.194.
22 Birtcher R C, Richardson J W, Mueller M H. Journal of Nuclear Materials, 1997, 244, 251.
23 Grest G S, Cohen M H. Advances in Chemical Physics, 1981, 1, 455.
24 Kim Y S, Hofman G L, Rest J, et al. Journal of Nuclear Materials, 2009, 389, 443.
25 Kim Y S, Hofman G L. Journal of Nuclear Materials, 2011, 410, 1.
26 Snelgrove J L, Domagala R F, Hofman G L, et al. The use of U3Si2 dispersed in aluminum in plate-type fuel elements for research and test reactors. Argonne National Lab, USA, 1987, pp.44.
27 Carmack W J, Porter D L, Chang Y I, et al. Journal of Nuclear Materials, 2009, 392, 139.
28 Ogata T. In:Comprehensive Nuclear Materials, Konings R J M, ed., Elsevier, UK, 2012, pp.1.
29 Rest J. Journal of Nuclear Materials, 1993, 207, 192.
30 Hofman G L, Kim Y S. Nuclear Engineering and Technology, 2005, 37, 299.
31 Qian Z Y, Xie X, Fu Y, et al. Journal of Nuclear Materials, 2022, 564, 153665.
32 Jue J F, Park B H, Clark C R, et al. Nuclear Technology, 2010, 172, 204.
33 Devaraj A, Kautz E, Kovarik L, et al. Scripta Materialia, 2018, 156, 70.
34 Reymann G A. Matpro-version 10: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior, Idaho National Engineering Lab, USA, 1978, pp.149.
35 Storms E K. Journal of Nuclear Materials, 1988, 158, 119.
36 Ross S B, El-Genk M S, Matthews R B. Journal of Nuclear Materials, 1990, 170(2), 169.
37 Metzger K E, Knight T W, Williamson R L. Model of U3Si2 fuel system using BISON fuel code. Idaho National Lab, USA, 2014, pp.3.
38 Gamble K A L, Williamson R L, Schwen D, et al. BISON and MARMOT development for modeling fast reactor fuel performance. Idaho National Lab, USA, 2015, pp.9.
39 Rest J, Zawadzki S A. FASTGRASS: A mechanistic model for the prediction of Xe, I, Cs, Te, Ba, and Sr release from nuclear fuel under normal and severe-accident conditions. Argonne National Lab, USA, 1992, pp.1.
40 Qian Z, Liu W, Yu R, et al. Journal of Nuclear Materials, 2021, 556, 153188.
41 Miao Y B, Gamble K A, Andersson D, et al. Nuclear Engineering and Design, 2017, 322, 336.
42 Yun D, Rest J, Hofman G L, et al. Journal of Nuclear Materials, 2013, 435, 153.
43 Ye B, Rest J, Yun D. Transactions of the American Nuclear Society, 2012, 106, 1292.
44 Ronchi C. Journal of Nuclear Materials, 1972, 45, 15.
45 Forsberg K, Massih A R. Journal of Nuclear Materials, 1985, 135, 140.
46 Veshchunov M S, Ozrin V D, Shestak V E, et al. Nuclear Engineering and Design, 2006, 236, 179.
47 Tonks M, Andersson D, Devanathan R, et al. Journal of Nuclear Mate-rials, 2018, 504, 300.
48 Noirot J, Desgranges L, Lamontagne J. Journal of Nuclear Materials, 2008, 372, 318.
[1] 于锐, 顾龙, 姚存峰, 张璐, 王冠, 郭亮, 吴金德, 姜韦, 李金阳. 加速器驱动次临界系统用嬗变核燃料研究进展分析[J]. 材料导报, 2024, 38(7): 22110316-11.
[2] 王兆, 张新虎, 王召浩, 王冠, 惠永博, 郑伟, 丁阳, 朱丽兵, 邓勇军, 傅先刚, 恽迪, 柳文波. 基于MOOSE平台的UO2燃料性能分析[J]. 材料导报, 2022, 36(7): 21040019-7.
[3] 王挺, 高业栋, 恽迪, 王冠, 周毅, 张坤, 郭子萱, 吕亮亮. 金属燃料辐照模型关于孔隙率的改进及快堆金属燃料性能分析程序开发[J]. 材料导报, 2022, 36(11): 21040054-5.
[4] 孙永菊, 陈建伟, 梅华平, 刘静, 李桃生, 吴庆生. 氮化铀(UN)粉末合成工艺分析[J]. 材料导报, 2021, 35(19): 19036-19040.
[5] 程亮, 张鹏程. 事故容错热导率增强型UO2核燃料的研究进展[J]. 材料导报, 2019, 33(11): 1787-1792.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed