Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 22110316-11    https://doi.org/10.11896/cldb.22110316
  无机非金属及其复合材料 |
加速器驱动次临界系统用嬗变核燃料研究进展分析
于锐1,2, 顾龙1,2,3,*, 姚存峰1,2,*, 张璐1, 王冠1,2, 郭亮4, 吴金德4, 姜韦1, 李金阳1,2
1 中国科学院近代物理研究所,兰州 730000
2 中国科学院大学核科学与技术学院,北京 100049
3 兰州大学核科学与技术学院,兰州 730000
4 中核四0四有限公司,兰州 732850
Advances in Research on Transmutation Fuel for Accelerator Driven Subcritical System
YU Rui1,2, GU Long1,2,3,*, YAO Cunfeng1,2,*, ZHANG Lu1, WANG Guan1,2, GUO Liang4, WU Jinde4, JIANG Wei1, LI Jinyang1,2
1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
2 School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
4 The 404 Company Limited, China National Nuclear Corporation, Lanzhou 732850, China
下载:  全 文 ( PDF ) ( 4020KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 加速器驱动次临界系统(Accelerator driven subcritical system,ADS)是乏燃料安全处理处置关键瓶颈问题的优秀解决方案,而开发适用于该系统的嬗变核燃料正是ADS研发的关键任务之一。然而由于嬗变对象次锕系元素的固有特殊性质、嬗变燃料体系相关机理尚不十分明确、制备技术难度大、嬗变核燃料相关试验数据和运行经验的欠缺等原因,ADS用嬗变核燃料的研发十分复杂且极具挑战。本文系统综述了作为ADS重要候选嬗变燃料的氧化物弥散型燃料CERCER/CERMET、氮化物燃料和金属燃料的研究进展,包括制备工艺、辐照实验和辐照后检验结果、物性参数、主要优缺点等内容,以期为我国ADS用嬗变核燃料的研发提供一定思路和参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于锐
顾龙
姚存峰
张璐
王冠
郭亮
吴金德
姜韦
李金阳
关键词:  加速器驱动次临界系统  嬗变核燃料  次锕系元素  氧化物弥散型燃料  氮化物燃料  金属燃料    
Abstract: Accelerator driven subcritical system (ADS) has exhibited great superiority in the safe treatment and disposal of spent fuel which is generated during irradiation in reactors, and the search for transmutation fuels with excellent comprehensive properties is one of the important tasks in ADS development. However, due to the inherent special properties of the minor actinides, the incomplete understanding of the mechanism related to transmutation fuels, the difficulty of the fabrication technology, and the lack of experimental data and operational experience, the development of transmutation fuel for ADS is very complicated and challenging. In this paper, the fabrication processes, irradiation experiments and post-irra-diation examination results, physical properties, main advantages and disadvantages of the leading candidate transmutation fuels for ADS such as oxide dispersion fuel CERCER/CERMET, nitride fuel and metal fuel are summarized to provide important ideas and references for investigating and exploring the transmutation fuels for ADS in China.
Key words:  accelerator driven subcritical system    transmutation fuel    minor actinides    oxide dispersion fuel    nitride fuel    metal fuel
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  TL352  
基金资助: 国家自然科学基金优秀青年科学基金项目(12122512)
通讯作者:  顾龙,教授、博士研究生导师。主持和参与了国家重大科技基础设施、国家重点研发计划、国家自然科学基金、中科院A类先导专项课题、环保部核与辐射安全监管项目等科研项目10余项,发表国内外学术论文100余篇,获发明专利10余项,主编和参编专著各1部。长期从事加速器驱动次临界反应堆多物理科学、核医学综合研究设施技术预研、紧凑高效中子产生技术及其应用、中子剂量探测技术等领域前沿探索研究工作。gul@lzu.edu.cn
姚存峰,中国科学院近代物理研究所研究员、博士研究生导师。目前主要从事固体材料辐照损伤、液态金属与材料相容性、核能结构材料性能评价、辐照损伤与液态金属腐蚀协同效应等领域的研究工作。发表国内外学术论文100余篇,获发明专利10余项。ycf@impcas.ac.cn   
作者简介:  于锐,助理研究员。2012年6月、2015年3月于哈尔滨工程大学分别获得工学学士学位和硕士学位。现为中国科学院大学核科学与技术学院、中国科学院近代物理研究所博士研究生,在顾龙教授的指导下进行研究。目前主要研究领域为核燃料设计及性能分析。
引用本文:    
于锐, 顾龙, 姚存峰, 张璐, 王冠, 郭亮, 吴金德, 姜韦, 李金阳. 加速器驱动次临界系统用嬗变核燃料研究进展分析[J]. 材料导报, 2024, 38(7): 22110316-11.
YU Rui, GU Long, YAO Cunfeng, ZHANG Lu, WANG Guan, GUO Liang,
WU Jinde, JIANG Wei, LI Jinyang. Advances in Research on Transmutation Fuel for Accelerator Driven Subcritical System. Materials Reports, 2024, 38(7): 22110316-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22110316  或          https://www.mater-rep.com/CN/Y2024/V38/I7/22110316
1 BP. bp Statistical Review of World Energy 2022 (71st edition), BP, UK, 2022, pp. 9.
2 International Energy Agency. Global energy review: CO2 emissions in 2021, IEA, France, 2022, pp. 9.
3 International Energy Agency. Nuclear power in a clean energy system, IEA, France, 2019, pp. 11.
4 Zhang T K, Li M R, Yin W P. The report on the development of china’s nuclear energy(2021), Social Sciences Academic Press, China, 2021, pp. 4 (in Chinese).
张廷克, 李闽榕, 尹卫平. 中国核能发展报告(2021), 社会科学文献出版社, 2021, pp.4.
5 Zhao Z X, Xia H H. China Nuclear Power, 2009, 2(3), 202 (in Chinese).
赵志祥, 夏海鸿. 中国核电, 2009, 2(3), 202.
6 Zhan W L, Xu H S. Bulletin of Chinese Academy of Sciences, 2012, 27(3), 375 (in Chinese).
詹文龙, 徐瑚珊. 中国科学院院刊, 2012, 27(3), 375.
7 Luo P, Wang S C, Hu Z G, et al. Physics, 2016, 45(9), 569 (in Chinese).
骆鹏, 王思成, 胡正国, 等. 物理, 2016, 45(9), 569.
8 Zhan W L, Yang L, Yan X S, et al. Atomic Energy Science and Techno-logy, 2019, 53(10), 1809 (in Chinese).
詹文龙, 杨磊, 闫雪松, 等. 原子能科学技术, 2019, 53(10), 1809.
9 Wang Z G, Yao C F, Qin Z, et al. Strategic Study of Chinese Academy of Engineering, 2019, 21(1), 39 (in Chinese).
王志光, 姚存峰, 秦芝, 等. 中国工程科学, 2019, 21(1), 39.
10 Luciano Cinotti, Benoit Giraud, Hamid Aït Abderrahim. Journal of Nuclear Materials, 2004, 335, 148.
11 Mikityuk K, Coddington P, Bubelis E, et al. Nuclear Engineering and Design, 2006, 236, 2452.
12 Gert Van den Eynde, Edouard Malambu, Alexey Stankovskiy, et al. Journal of Nuclear Science and Technology, 2015, 52, 1053.
13 Hamid Aït Abderrahim, Didier De Bruyn, Gert Van Den Eynde, et al. Encyclopedia of Nuclear Energy, 2021, 4, 191.
14 Abderrahim H A, De Bruyn D, Dierckx M, et al. Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika, 2019, 2, 29.
15 Hamid Aït Abderrahim, Peter Baeten, Didier De Bruyn, et al. Energy Conversion and Management, 2012, 63, 4.
16 Jeroen Engelen, Hamid Aït Abderrahim, Peter Baeten, et al. International Journal of Hydrogen Energy, 2015, 40, 15137.
17 Massimo Sarotto. Annals of Nuclear Energy, 2017, 102, 440.
18 Mansani L, Artioli C, Schikorr M, et al. Nuclear Technology, 2012, 180, 241.
19 Kazufumi Tsujimoto, Toshinobu Sasa, Kenji Nishihara, et al. Journal of Nuclear Science and Technology, 2004, 41, 21.
20 Kazufumi Tsujimoto, Hiroyuki Oigawa, Nobuo Ouchi, et al. Journal of Nuclear Science and Technology, 2007, 44, 483.
21 Takanori Sugawara, Hayanori Takei, Hiroki Iwamoto, et al. Progress in Nuclear Energy, 2018, 106, 27.
22 Hiroyuki Oigawa, Kazufumi Tsujimoto, Kenji Nishihara, et al. Journal of Nuclear Materials, 2011, 415, 229.
23 Takanori Sugawara. Annals of Nuclear Energy, 2020, 149, 107818.
24 Won Seok Park, Uncheol Shin, Seok-Jung Han, et al. Nuclear Enginee-ring and Design, 2000, 199, 155.
25 Song T Y, Kim Y, Lee B O, et al. Annals of Nuclear Energy, 2007, 34, 902.
26 Alessandro Alemberti. Encyclopedia of Nuclear Energy, 2021, 1, 523.
27 Zrodnikov A, Gulevich A, Chekounov V, et al. Progress in Nuclear Energy, 2005, 47, 339.
28 Degtyarev A M, Kalugin A K, Ponomarev L I. Progress in Nuclear Energy, 2005, 47, 99.
29 Gulevich A, Kalugin A, Ponomarev L, et al. Progress in Nuclear Energy, 2008, 50, 359.
30 Degtyarev A M, Kalugin A K, Kolyaskin O E, et al. Atomic Energy, 2006, 101, 569.
31 Lawrence G, Chan K C, Schriber S, et al. Progress in Nuclear Energy, 2001, 38, 25.
32 Van Tuyle G, Hill D, Beller D, et al. Progress in Nuclear Energy, 2001, 38, 3.
33 Beller D, Van Tuyle G, Bennett D, et al. Nuclear Instruments and Met-hods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 463, 468.
34 Yan Cao, Yousry Gohar. Annals of Nuclear Energy, 2019, 131, 297.
35 Peng T J, Gu L, Wang D W, et al. Atomic Energy Science and Technology, 2017, 51(12), 2235(in Chinese).
彭天骥, 顾龙, 王大伟, 等. 原子能科学技术, 2017, 51(12), 2235.
36 Gu L, Su X K. Frontiers in Energy, 2021, 15, 810.
37 Yu R, Gu L, Sheng X, et al. International Journal of Energy Research, 2021, 45, 11552.
38 Sobolev V, Uyttenhove W, Thetford R, et al. Journal of Nuclear Mate-rials, 2011, 414, 257.
39 International Atomic Energy Agency. Status of accelerator driven systems research and technology development, IAEA, Vienna, 2015, pp. 46.
40 Park W S, Song T Y, Lee B O, et al. Nuclear Engineering and Design, 2002, 219, 207.
41 Jueun Lee, Yong-Hoon Shin, Il Soon Hwang. In: Transactions of the Korean Nuclear Society Spring Meeting. Jeju, Korea, 2016.
42 Seungcheol Lee, Hyung Jin Shim. In: Transactions of the Korean Nuclear Society Autumn Meeting. Goyang, Korea, 2019.
43 Thiolliere N, Courtin F, Leniau B, et al. Progress in Nuclear Energy, 2015, 85, 518.
44 Delage F, Belin R, Chen X N, et al. Energy Procedia, 2011, 7, 303.
45 Maschek W, Chen X, Delage F, et al. Progress in Nuclear Energy, 2008, 50, 333.
46 Pillon S. In: Comprehensive Nuclear Materials, Kongings R, ed., Elsevier, Netherlands, 2012, pp. 109.
47 Fabienne Delage, Laure Ramond, Annelise Gallais-Duiring, et al. In: Comprehensive Nuclear Materials 2nd Edition, Rudy Konings, Roger Stoller, ed., Elsevier, Netherlands, 2020, pp. 645.
48 Janne Wallenius, Sylvie Pillon, Ludmila Zaboudko. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 562, 625.
49 Song T. Design and Fabrication of dispersion nuclear fuel for transmuting minor actinides. Ph. D. Thesis, University of Science and Technology of China, China, 2020 (in Chinese).
宋彤. 嬗变次锕系核素的弥散型核燃料的设计与制备研究. 博士学位论文, 中国科学技术大学, 2020.
50 Jankowiak A, Jorion F, Maillard C, et al. Nuclear Science and Enginee-ring, 2008, 160, 378.
51 Jankowiak A, Maillard C, Donnet L. Journal of Nuclear Materials, 2009, 393, 87.
52 International Atomic Energy Agency. Status of Minor Actinide Fuel Deve-lopment, IAEA, Vienna, 2009, pp. 40.
53 Haas D, Fernandez A, Staicu D, et al. Energy Conversion and Management, 2008, 49, 1928.
54 Fabienne Delage, Yasuo Arai, Renaud Belin, et al. In: Proceedings of GLOBAL 2011, Makuhari, Japan, 2011.
55 Nuclear Energy Agency Organisation for Economic Co-Operation and Development. State-of-the-art Report on Innovative Fuels for Advanced Nuclear Systems, NEA OECD, France, 2014, pp. 109.
56 D’Agata E, Lapetite J M, Klaassen F, et al. Progress in Nuclear Energy, 2011, 53, 748.
57 D’Agata E, Knol S, Fedorov A V, et al. Journal of Nuclear Materials, 2015, 465, 820.
58 Lamontagne J, Pontillon Y, Esbelin E, et al. Journal of Nuclear Mate-rials, 2013, 440, 366.
59 Croixmarie Y, Abonneau E, Fernandez A, et al. Journal of Nuclear Materials, 2003, 320, 11.
60 Cecilia G, Delage F, Lamontagne J, et al. In: Proceedings of Global 2015, Paris, France, 2015.
61 Béjaoui S, Lamontagne J, Esbelin E, et al. Journal of Nuclear Materials, 2011, 415, 158.
62 Pascal V, Selabi R, Tommasi J. In: M&C 2017-International Confe-rence on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Jeju, Korea, 2017.
63 Esbelin E, Buravand E, Bejaoui S, et al. Radiochimica Acta, 2013, 101, 293.
64 Lamontagne J, Béjaoui S, Hanifi K, et al. Journal of Nuclear Materials, 2011, 413, 137.
65 Concettina Andrello, Daniel Freis, Rosa Lo Frano, et al. In: Procee-dings of the 2017 25th International Conference on Nuclear Engineering, Shanghai, China, 2017.
66 Fütterer M, Moss R, May R. Operation and Utilisation of the High Flux Reactor-Annual Report 2012. Publications Office of the European Union, Luxembourg, 2013, pp. 5.
67 Calabrese R, Vettraino F, Artioli C, et al. Annals of Nuclear Energy, 2010, 37, 867.
68 Staicu D, Somers J, Fernandez A, et al. Nuclear Materials and Energy, 2015, 3-4, 6.
69 Haas D, Fernandez A, Nastren C, et al. Energy Conversion and Management, 2006, 47, 2724.
70 Chen X N, Rineiski A, Maschek W, et al. Progress in Nuclear Energy, 2011, 53, 855.
71 Mühr-Ebert E L, Lichte E, Bukaemskiy A, et al. Journal of Nuclear Materials, 2018, 505, 94.
72 Yasuo Arai, Kazuo Minato. Journal of Nuclear Materials, 2005, 344, 180.
73 Kazuo Minato, Mitsuo Akabori, Masahide Takano, et al. Journal of Nuclear Materials, 2003, 320, 18.
74 Kazuo Minato, Masahide Takano, Haruyoshi Otobe, et al. Journal of Nuclear Materials, 2009, 389, 23.
75 Tsuyoshi Nishi, Masahide Takano, Akinori Itoh, et al. Journal of Nuclear Materials, 2006, 355, 114.
76 Bruce Hilton, Douglas Porter, Steven Hayes. AFC-1 Transmutation Fuels Post-Irradiation Hot Cell Examination 4 to 8 at. % Final Report: Irradiation Experiments AFC-1B, AFC-1F and AFC-1Æ, Idaho National Laboratory, US, 2006, pp. 16.
77 Harp J M, Chichester H J M, Capriotti L. Baseline Postirradiation Exa-mination of the FUTURIX-FTA Experiments, Idaho National Laboratory, US, 2020.
78 Harp J M, Hayes S L, Medvedev P G, et al. Testing Fast Reactor Fuels in a Thermal Reactor: A Comparison Report, Idaho National Laboratory, US, 2017, pp. 12.
79 Tsuyoshi Nishi, Yasuo Arai, Masahide Takano, et al. Property database of TRU nitride fuel, Japan Atomic Energy Agency, Japan, 2014, pp. 12.
80 Tsuyoshi Nishi, Masahide Takano, Akinori Itoh, et al. IOP Conference Series: Materials Science and Engineering, 2010, 9, 012017.
81 Tsuyoshi Nishi, Masahide Takano, Kenichi Ichise, et al. Journal of Nuclear Science and Technology, 2011, 48, 359.
82 Chichester H J M, Hayes S L, McClellan K J, et al. In: Proceedings of Global 2015, Paris, France, 2015.
83 Harp J M, Capriotti L, Chichester H J M. Journal of Nuclear Materials, 2019, 515, 420.
84 Chichester H J M, Hilton B A, Hayes S L, et al. Journal of Nuclear Materials, 2020, 542, 152480.
[1] 钱郑宇, 严冬, 恽迪. 核燃料裂变气体行为研究进展[J]. 材料导报, 2024, 38(2): 22090311-10.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed