Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 24020099-8    https://doi.org/10.11896/cldb.24020099
  金属与金属基复合材料 |
TC4表面WC/Ni-MoS2钛基复合涂层组织与摩擦学性能
操慧珺1,2, 李韦承3, 张天刚3,*, 张宏伟3, 张志强3
1 厦门城市职业学院交通工程学院,福建 厦门 361008
2 厦门城市职业学院人工智能应用技术研究中心,福建 厦门 361008
3 中国民航大学航空工程学院,天津 300300
Organization and Tribological Properties of WC/Ni-MoS2 Titanium-based Composite Coating on TC4 Surface
CAO Huijun1,2, LI Weicheng3, ZHANG Tiangang3,*, ZHANG Hongwei3, ZHANG Zhiqiang3
1 School of Transportation Engineering, Xiamen City Vocational College, Xiamen 361008, Fujian, China
2 Artificial Intelligence Applied Technology Research Centre, Xiamen City Vocational College, Xiamen 361008, Fujian, China
3 School of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
下载:  全 文 ( PDF ) ( 56962KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 拟在TC4表面合成Ti-S系自润滑耐磨熔覆层,并探究WC添加对涂层组织与摩擦学性能的影响,设计了TC4+Ni-MoS2+xWC(x=5%、10%和15%)钛基材料体系,通过同轴送粉激光熔覆技术完成了涂层制备。研究表明,增加WC含量不利于改善涂层成形质量,但WC添加量变化并未影响涂层析出相种类,三种涂层均包括TiC、Ti2Ni、Ti2S和β-Ti基体;随着WC含量增大,TiC分布数量增多,粒径增大,生长形态由类球状逐渐演变为花瓣状;润滑相MoS2未能在涂层中得到保留,其完全溶解后在钛基熔池体系下合成了与润滑相TiS等形态相似的条状相Ti2S。三种WC含量的涂层显微硬度和耐磨性能均高于TC4基材,磨损机理均为磨粒磨损,但减摩性能均不低于TC4基材,说明原位Ti2S相不具备自润滑功能;WC含量增加虽然有利于增大涂层的显微硬度和耐磨性能,但引起了涂层磨损面质量下降,摩擦系数波幅增大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
操慧珺
李韦承
张天刚
张宏伟
张志强
关键词:  激光熔覆  TC4  Ti2S  微观组织  摩擦学性能    
Abstract: To synthesize Ti-S self-lubricating wear-resistant fused cladding on TC4 surface and to investigate the effect of WC addition on the coating organization and tribological properties, a titanium-based material system of TC4+Ni-MoS2+xWC (x=5%, 10%, and 15%) was designed, and the coatings were prepared by the coaxial feeding laser cladding technique. It was shown that increasing the WC content was not conducive to the improvement of the coating forming quality, but the change of WC addition did not affect the type of precipitated phase in the coatings, and the three coatings included TiC, Ti2Ni, Ti2S and β-Ti matrix;with the increase of the WC content, the distribution of TiC increased in number and particle size, and the growth morphology evolved from spherical to petal-like;the lubrication phase MoS2 was not retained in the coatings, and its complete dissolution synthesized under the titanium-based molten pool system with similar morphology to the lubricating phase TiS, etc. The microhardness and wear-resistant properties of the three WC content coatings were higher than those of the TC4 substrate, and the wear mechanism was abrasive wear, but the friction reduction performance was not lower than that of the TC4 substrate, which indicated that the in-situ Ti2S phase did not have self-lubrication;the increase in the content of WC, although conducive to the increase in the microhardness and wear-resistant properties, but caused the coating to become more and more lubricated. Although the increase of WC content is favorable to increase the microhardness and wear resistance of the coating, it caused the decrease of the quality of the wear surface of the coating and the increase of the friction coefficient amplitude.
Key words:  laser cladding    TC4    Ti2S    microstructure    tribological property
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  TG146  
基金资助: 国家自然科学基金(U2033211);厦门市青年创新基金(3502Z20206026);厦门城市职业学院校级科研项目(KYKJ2019-4)
通讯作者:  * 张天刚,中国民航大学航空工程学院副教授、硕士研究生导师。2005年至今一直在中国民航大学工作,于2019年获得天津工业大学博士学位。目前主要从事金属材料激光表面改性与金属材料激光再制造等方面的研究。发表论文50余篇,包括Journal of Alloys and Compound、Materials Letters、Materials Science and Engineering:A、Journal of Materials Research and Technology、Journal of Materials Engineering and Performance、Ceramics International等。113099506@qq.com   
作者简介:  操慧珺,厦门城市职业学院副教授。2007年哈尔滨工业大学材料成型及控制工程专业本科毕业,2009年哈尔滨工业大学材料加工工程专业硕士毕业,2015年哈尔滨工业大学动力机械及工程专业博士毕业,2015年后到厦门城市职业学院飞机机电设备维修专业工作至今。目前主要从事材料表面改性、异质互连工艺开发等方面的研究工作。已发表论文20余篇,包括Materials & Design、Acta Materialia、China Welding、Materials Letters、Materials、Journal of Advanced Joining Processes、Materials Science & Engineering A等。获得国家发明专利授权7项。
引用本文:    
操慧珺, 李韦承, 张天刚, 张宏伟, 张志强. TC4表面WC/Ni-MoS2钛基复合涂层组织与摩擦学性能[J]. 材料导报, 2024, 38(15): 24020099-8.
CAO Huijun, LI Weicheng, ZHANG Tiangang, ZHANG Hongwei, ZHANG Zhiqiang. Organization and Tribological Properties of WC/Ni-MoS2 Titanium-based Composite Coating on TC4 Surface. Materials Reports, 2024, 38(15): 24020099-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.24020099  或          http://www.mater-rep.com/CN/Y2024/V38/I15/24020099
1 Zhang T G, Zhang Q, Zhuang H F, et al. Acta Aeronautica et Astronautica Sinica, 2021, 42(7), 591 (in Chinese).
张天刚, 张倩, 庄怀风, 等. 航空学报, 2021, 42(7), 591.
2 Zhang Z Q, Yang Q, Yu Z M, et al. Materials Reports, 2024, 38(2), 182 (in Chinese).
张志强, 杨倩, 于子鸣, 等. 材料导报, 2024, 38(2), 182.
3 Zhang Z Q, Yang F, Zhang H W, et al. Acta Aeronautica et Astronautica Sinica, 2021, 42(7), 43 (in Chinese).
张志强, 杨凡, 张宏伟, 等. 航空学报, 2021, 42(7), 43.
4 Zhan X H, Qi C Q, Zhou J J. Optics & Laser Technology, 2019, 109, 577.
5 Liu J G, Yang J H, Wang G S, et al. Rare Metals Materials And Engineering, 2022, 51(8), 2907 (in Chinese).
刘金刚, 杨建花, 王高升, 等. 稀有金属材料与工程, 2022, 51(8), 2907.
6 Qi C Q, Zhan X H, Gao Q Y, et al. Optics & Laser Technology, 2019, 119, 105572.
7 Zhang T G, Li B X, Zhang Z Q, et al. Journal of Aerospace Materials, 2022, 42(4), 83 (in Chinese).
张天刚, 李宝轩, 张志强, 等. 航空材料学报, 2022, 42(4), 83.
8 Gao Q S, Yan H, Qing Y, et al. Chinese Journal of Materials Research, 2018, 32(12), 921 (in Chinese).
高秋实, 闫华, 秦阳, 等. 材料研究学报, 2018, 32(12), 921.
9 Qu C C, Li J, Juan Y F, et al. Surface and Coatings Technology, 2019, 357, 811.
10 Zhang T G, Zhang Q, Zhuang H F, et al. Acta Optical Sciences, 2020, 40(11), 133 (in Chinese).
张天刚, 张倩, 庄怀风, 等. 光学学报, 2020, 40(11), 133.
11 Zhang Z Q, Yang F, Zhang T G, et al. Surface Technology, 2020, 49(10), 138 (in Chinese).
张志强, 杨凡, 张天刚, 等. 表面技术, 2020, 49(10), 138.
12 Zhang T G, Aihemaiti H, Jeong I W, et al. Materials Letters, 2023, 338, 134044.
13 Wang T, Liu X Y, Chen S, et al. Journal of Manufacturing Processes, 2022, 82, 296.
14 Zhang Z Q, Yu Z M, Zhang T G, et al. Acta Aeronautica et Astronautica Sinica, 2023, 44(8), 291 (in Chinese).
张志强, 于子鸣, 张天刚, 等. 航空学报, 2023, 44(8), 291.
15 Cheng Z Y, Xu J, Liu W J, et al. Transactions of Materials and Heat Treatment, 2007(S1), 253 (in Chinese).
陈哲源, 徐江, 刘文今, 等. 材料热处理学报, 2007(S1), 253.
16 Zhai Y J, Liu X B, Qiao S J, et al. Optics & Laser Technology, 2017, 89, 97.
17 Zhang H Y, Zhang J, Zhu L, et al. Hot Working Technology, 2022, 51(8), 83 (in Chinese).
张海云, 张金, 朱磊, 等. 热加工工艺, 2022, 51(8), 83.
18 Li Q, Cheng F Q, Wang X, et al. Surface Technology, 2022, 51(2), 129 (in Chinese).
李倩, 陈发强, 王茜, 等. 表面技术, 2022, 51(2), 129.
19 Li F Q, Gao Z Z, Li L Q, et al. Optics & Laser Technology, 2016, 77, 134.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[3] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[4] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[5] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[6] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[7] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[8] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[9] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[10] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[11] 晁昀暄, 戴乐阳, 魏钰坤, 王永坚, 杜金洪. 磺酸钙/油酸改性碳基二硫化钼的制备及在乳化油中的摩擦学性能[J]. 材料导报, 2024, 38(2): 22090049-7.
[12] 高瑞泽, 王亚强, 张金钰, 杨红艳, 刘刚, 孙军. 梯度结构金属材料的制备方法和力学性能研究进展[J]. 材料导报, 2024, 38(15): 23040269-12.
[13] 王慧鹏, 李鹏, 王喜茂, 郭伟玲, 马国政, 王海斗. 冷喷涂温度对Cu-Ti3AlC2复合涂层微观组织及摩擦学性能的影响[J]. 材料导报, 2024, 38(15): 23030288-9.
[14] 蔡琰, 周雷, 叶枫, 张炎雨, 谢志雄, 董仕节, 谈芬芳, 解剑英. 薄壁H65黄铜管高频感应焊接接头组织和力学性能[J]. 材料导报, 2024, 38(14): 23030122-6.
[15] 魏新龙, 戴凡昌, 付二广, 班傲林, 张超. 单道激光熔覆高熵合金工艺优化及复合涂层耐冲蚀性能研究[J]. 材料导报, 2024, 38(14): 23020130-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed