Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 24020018-5    https://doi.org/10.11896/cldb.24020018
  高分子与聚合物基复合材料 |
以聚丙烯酰胺为电解液添加剂稳定金属锌负极
李雪艳1,*, 张蒙茜1, 裴文乐2, 李莎莎1, 李鹏1
1 太原科技大学化学工程与技术学院,太原 030024
2 太原科技大学重型机械教育部工程研究中心,太原 030024
Stabilization of Zinc Metal Anodes with Polyacrylamide as an Electrolyte Additive
LI Xueyan1,*, ZHANG Mengxi1, PEI Wenle2, LI Shasha1, LI Peng1
1 School of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
2 Engineering Research Center of Heavy Machinery of Ministry of Education, Taiyuan University of Science and Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 7546KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水系锌离子电池因具有成本低廉和安全性高等优点而被认为是极具前景的储能体系。金属锌因具备高的理论体积比容量和较低的氧化还原电位,可以直接用作水系锌离子电池负极,但金属锌负极存在自腐蚀和锌枝晶生长等问题,导致电池循环寿命缩短,严重制约了其实际应用。本工作设计了一种聚丙烯酰胺(PAM)聚合物作为锌离子电池的电解液添加剂,结果显示在2 g/L PAM添加剂电解液体系中电池表现出最优的循环性能,在5 mA/cm2、1 mAh/cm2时锌-锌对称电池能稳定循环2 800 h,进一步的电化学测试和扫描电子显微镜表征证明PAM添加剂能够很好地抑制金属锌枝晶和减轻锌电极腐蚀。该工作为通过功能性电解质添加剂设计高性能的水系电解液添加剂提供了一种新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李雪艳
张蒙茜
裴文乐
李莎莎
李鹏
关键词:  锌负极  聚丙烯酰胺  锌枝晶  聚合物添加剂    
Abstract: Aqueous zinc-ion batteries are considered as a promising energy storage system due to their low cost and high safety. The zinc metal can be directly used as the anode of aqueous zinc ion batteries because of its high theoretical volume-specific capacity and low redox potential. However, the zinc metal anode has problems such as self-corrosion and zinc dendrite growth, which seriously shorten the battery cycle life and restricts its practical application. In this work, a polymer polyacrylamide (PAM) was designed as an electrolyte additive for zinc ion batteries, and it was found that the batteries showed the optimal cycling performance in the electrolyte system with 2 g/L PAM, and the zinc symmetric batteries remains steady after 2 800 h at 5 mA/cm2 and 1 mAh/cm2. Further electrochemical tests and SEM characterization demonstrated that the PAM additive was able to inhibit metallic zinc dendrites and mitigate zinc electrode corrosion. This work provides a new idea for designing high-performance of aqueous electrolyte additives through functional electrolyte additives.
Key words:  zinc anode    polyacrylamide    zinc dendrite    polymer additive
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  O646.6  
基金资助: 山西省基础研究计划青年项目(202303021212214;202203021212301;202203021212316);山西省高等学校科技创新项目(2022L322;2022L273;2022L309);来晋工作优秀博士奖励资金项目(20222095;20222097);太原科技大学博士科研启动基金(20222027;20222030)
通讯作者:  * 李雪艳,太原科技大学化学工程与技术学院讲师、硕士研究生导师。2014年山西大同大学化学专业本科毕业,2021年北京航空航天大学材料物理与化学专业博士毕业后到太原科技大学工作至今,目前主要从事能源存储和转化材料等方面的研究工作。在国际期刊发表论文10余篇,包括Nano Energy、Journal of Colloid and Interface Science、ACS Applied Materials & Interfaces等。xyli@tyust.edu.cn   
引用本文:    
李雪艳, 张蒙茜, 裴文乐, 李莎莎, 李鹏. 以聚丙烯酰胺为电解液添加剂稳定金属锌负极[J]. 材料导报, 2024, 38(15): 24020018-5.
LI Xueyan, ZHANG Mengxi, PEI Wenle, LI Shasha, LI Peng. Stabilization of Zinc Metal Anodes with Polyacrylamide as an Electrolyte Additive. Materials Reports, 2024, 38(15): 24020018-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.24020018  或          http://www.mater-rep.com/CN/Y2024/V38/I15/24020018
1 Wang L Q, Feng J, Tong Y, et al. International Journal of Hydrogen Energy, 2019, 44(1), 128.
2 Lan B, Zhang W, Luo P, et al. Materials Reports, 2020, 34 (7), 13068(in Chinese).
蓝彬栩, 张文卫, 罗平, 等. 材料导报, 2020, 34 (7), 13068.
3 Yi Z, Yan L, Zhang T, et al. Composites Part A:Applied Science and Manufacturing, 2020, 136, 105968.
4 Wang L, Tong Y, Feng J, et al. Sustainable Materials and Technologies, 2019, 19, e00089.
5 Larcher D, Tarascon J M. Nature Chemistry, 2015, 7(1), 19.
6 Wand L, Zhou Z, Yan X, et al. Energy Storage Materials, 2018, 14, 22.
7 Wang K, Jiang K, Chung B, et al. Nature, 2014, 514(7522), 348.
8 Fu A, Wang C, Pei F, et al. Small, 2019, 15(10), 1804786.
9 Tarascon J M, Armand M. Nature, 2001, 414, 359.
10 Petnikota S, Srikanth V V S S, Nithyadharseni P, et al. ACS Sustainable Chemistry & Engineering, 2015, 3(12), 3205.
11 Zhao X, Liang X, Li Y, et al. Energy Storage Materials, 2021, 42, 533.
12 He P, Chen Q, Yan M, et al. EnergyChem, 2019, 1(3) (2019) 100022.
13 Jia H, Wang Z, Tawiah B, et al. Nano Energy, 2020, 70, 104523.
14 Ruan P, Liang S, Lu B, et al. Angewandte Chemie International Edition, 2022, 61(17), e202200598.
15 Zhang Q, Luan J, Tang Y, et al. Angewandte Chemie International Edition, 2020, 59(32), 13180.
16 Yan H, Zhang X, Yang Z, et al. Coordination Chemistry Reviews, 2022, 452, 214297.
17 Guo S, Qin L, Zhang T, et al. Energy Storage Materials, 2021, 34, 545.
18 Blanc L E, Kundu D, Nazar L F. Joule, 2020, 4(4), 771.
19 Gu X, Du Y, Ren X, et al. Advanced Functional Materials, 2024, 34(25), 2316541.
20 Yan M, Dong N, Zhao X, et al. ACS Energy Letter, 2021, 6(9) 3236.
21 Qiao S, Zhou J, Zhao D, et al. Journal of Colloid and Interface, 2024, 653, 1085.
22 Miller B G, Traut T W, Wolfenden. Journal of the American Chemical Society, 1998, 120, 2666.
23 Youssef K M, Koch C C, Fedkiw P S. Electrochimica Acta, 2008, 54, 677.
[1] 黎涛, 孟威明, 王丁丁, 卫春祥, 鲁红典. 多层结构聚丙烯酰胺水凝胶太阳能蒸发器的制备及性能[J]. 材料导报, 2024, 38(7): 22080085-5.
[2] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[3] 范雷倚, 王锐, 何睿杰, 张瑞阳, 张骞, 周莹. 离子型聚丙烯酰胺原位修饰聚氨酯泡沫用于高效乳液分离[J]. 材料导报, 2022, 36(19): 21060195-6.
[4] 孙晴, 高筠. 水系锌离子电池的最新研究进展[J]. 材料导报, 2022, 36(17): 20080133-7.
[5] 蓝彬栩, 张文卫, 罗平, 汤臣, 唐稳, 左春丽, 董仕节, 陈丽能. 水系锌离子电池负极材料的研究进展[J]. 材料导报, 2020, 34(13): 13068-13075.
[6] 刘婷, 陈伟东, 鞠红民, 闫淑芳, 张宇欣, 马文. 聚丙烯酰胺凝胶法制备氧化锆纳米粉体的热分解过程和相转变行为[J]. 材料导报, 2019, 33(14): 2315-2318.
[7] 王德玄, 王磊, 于良民. 三维结构聚丙烯酰胺/聚乙烯醇水凝胶的合成及其在超级电容器中的应用[J]. 材料导报, 2018, 32(17): 2907-2911.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed