Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 23020130-7    https://doi.org/10.11896/cldb.23020130
  金属与金属基复合材料 |
单道激光熔覆高熵合金工艺优化及复合涂层耐冲蚀性能研究
魏新龙, 戴凡昌, 付二广, 班傲林, 张超*
扬州大学机械工程学院,江苏 扬州 225127
Process Optimization of Single Pass Laser Cladding High Entropy Alloy and Study on Erosion Resistance of Its Composite Coatings
WEI Xinlong, DAI Fanchang, FU Erguang, BAN Aolin, ZHANG Chao*
School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
下载:  全 文 ( PDF ) ( 10279KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用激光熔覆技术在0Cr13Ni5Mo水电用不锈钢表面制备了陶瓷增强高熵合金涂层。以显微硬度和稀释率作为指标,设计了三因素三水平正交实验,确定了单道最佳熔覆工艺为激光功率2 500 W、扫描速度200 mm/min、送粉速度9.5 g/min。采用上述最佳工艺参数,并选择50%搭接率,制备了AlCoCrFeNi-1%Ni(质量分数,下同)包Al2O3复合涂层,采用X射线衍射仪、扫描电镜、显微硬度仪等分析表征复合涂层的微观组织、物相和显微硬度。通过射流式冲蚀试验装置研究850 ℃、保温2 h热处理对复合涂层耐冲蚀性能的影响。结果表明,热处理后复合涂层微观组织未发生相变,复合涂层依然由体心立方结构(BCC)的单相固溶体相所组成,但晶粒尺寸显著细化。高熵合金-1%Ni包Al2O3复合涂层的显微硬度从热处理前的504HV0.3提高到545HV0.3。当冲蚀时间为30 min时,热处理前后涂层的质量损失分别为63.5 mg和50.5 mg;当冲蚀时间为120 min时,热处理前后涂层的质量损失分别为178.5 mg和146.9 mg,热处理后的复合涂层表现出更好的耐冲蚀性。热处理后,涂层在低冲蚀角度下由液、固双相流微切削作用的“犁沟”形貌为主,随着冲蚀角度的提高,涂层表面从单一“犁沟”形貌渐变为微切削和冲击破碎协同作用的“犁沟”“唇片”“凹坑”的复合形貌。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏新龙
戴凡昌
付二广
班傲林
张超
关键词:  激光熔覆  高熵合金  Ni包Al2O3  正交实验  耐冲蚀性    
Abstract: Ceramic-reinforced high entropy alloy coating was prepared on the surface of stainless steel used in 0Cr13Ni5Mo turbines by laser cladding technology. Using microhardness and dilution rate as indexes, an orthogonal experiment with three factors and three levels were performed, and the optimal single-channel cladding technology was determined as follows: laser power 2 500 W, scanning speed 200 mm/min, powder feeding speed 9.5 g/min. AlCoCrFeNi-1wt% Ni-coated Al2O3 composite coating was prepared with the optimum process parameters and 50% bonding rate. The microstructure, phase and microhardness of the composite coating were analyzed and characterized by X-ray diffractometer, scanning electron microscope and microhardness tester. The influence of heat treatment at 850 ℃ for 2 h on the erosion resistance of the composite coating was studied by an injection-flow erosion test device. The results show that the microstructure of the composite coating does not undergo phase transformation after heat treatment, and the composite coating is still composed of single-phase solid solution with body-centered cubic structure (BCC), but the grain size is significantly refined. The microhardness of AlCoCrFeNi-1wt% Ni-coated Al2O3 composite coating increased from 504HV0.3 before heat treatment to 545HV0.3. Before and after heat treatment, the mass loss of the coating is 63.5 mg and 50.5 mg when the coating is eroded for 30 min. The mass loss was 178.5 mg and 146.9 mg after 120 min of erosion. The composite coating showed better erosion resistance after heat treatment. After annealing treatment, the surface morphology of the coating showed a ‘furrow’ dominated by the micro-cutting effect of liquid and solid two-phase flow at low erosion angle. With the increase of erosion angle, the coating surface gradually changes from a single ‘furrow’ morphology to a composite morphology of ‘furrow’ ‘lip piece’ and ‘pit’ under the synergic effect of micro-cutting and impact crushing.
Key words:  laser cladding    high entropy alloy    Ni-coated Al2O3    orthogonal experiment    erosion resistance
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  TG174.2  
基金资助: 国家自然科学基金面上项目(52375210;52375209);江苏省自然科学基金青年基金项目(BK20200939);扬州市校合作专项(YZ2022182);扬州市科技计划(YZ2023246)
通讯作者:  * 张超,扬州大学机械工程学院教授,三级教授,博士研究生导师。2009年获得西安交通大学、法国贝尔福蒙贝利亚技术大学联合培养博士。2020年获中国材料研究学会科学技术奖二等奖(排名第1),2021年获江苏省杰出青年基金。主要从事以热喷涂合金涂层工艺优化和超低浓度和室温下工作工作的半导体气敏方向研究。在Sensors and Actuators B、Journal of Alloys and Compounds、Tribology International等期刊上发表SCI论文120余篇,被引超6 000次。zhangc@yzu.edu.cn   
作者简介:  魏新龙,扬州大学机械工程学院副教授、硕士研究生导师。2010年南京工业大学本科毕业,2010—2016年南京工业大学博士毕业后于扬州大学机械工程学院任教。主要从事热喷涂/激光熔覆防腐耐磨涂层技术和特种表面冲击强化技术研究。在Applied Surface Science、Journal of Alloys and Compounds、Engineering Failure Analysis等期刊上发表论文10余篇。
引用本文:    
魏新龙, 戴凡昌, 付二广, 班傲林, 张超. 单道激光熔覆高熵合金工艺优化及复合涂层耐冲蚀性能研究[J]. 材料导报, 2024, 38(14): 23020130-7.
WEI Xinlong, DAI Fanchang, FU Erguang, BAN Aolin, ZHANG Chao. Process Optimization of Single Pass Laser Cladding High Entropy Alloy and Study on Erosion Resistance of Its Composite Coatings. Materials Reports, 2024, 38(14): 23020130-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020130  或          http://www.mater-rep.com/CN/Y2024/V38/I14/23020130
1 Javaheri V, Haiko O, Sadeghpour S, et al. Wear, 2021, 476, 203678.
2 Wei X L, Zhu W Y, Zhu D J, et al. Journal of Nanjing University of Technology (Natural Science Edition), 2020, 42(1), 1 (in Chinese).
魏新龙,朱无言,朱德佳,等. 南京工业大学学报(自然科学版), 2020, 42(1), 1.
3 Satish R M, Dhananjay V B, Jyoti V M. Materials Today: Proceedings, 2017,4,9902.
4 Kuznetsov M, Turichin G, Silevich V, et al. Procedia Manufacturing, 2019, 36, 163.
5 Mao H R, Fei H, Jiang Y, et al. Journal of Nanjing University of Technology (Natural Science Edition), 2022,44(6),640 (in Chinese).
冒海荣,费昊,姜勇,等. 南京工业大学学报(自然科学版), 2022, 44(6), 640.
6 Sarpreet Singh, Deepak Kumar Goyal, Parlad Kumar, et al. International Journal of Refractory Metals and Hard Materials, 2022, 105, 105825.
7 Gao Zhuanni, Wang Leilei, Wang Yanni, et al. Journal Citation Indicator, 2022, 903, 163905.
8 Li Meiyan, Zhang Qi, Han Bin, et al. Materials Chemistry and Physics, 2021, 258, 123850.
9 Yang Fan,Wang Lilin,Wang Zhijun, et al. Journal of Materials Science & Technology, 2022, 106, 128.
10 Li L, Ye H, Liu Y, et al. Surface Technology, 2022, 51(7), 388 (in Chinese).
李礼,叶宏,刘越,等. 表面技术, 2022, 51(7), 388.
11 Miao Junwei, Liang Hui, Zhang Aijun, et al. Tribology International, 2021, 153, 106599.
12 Zhong Z Z, Sun Y N, Cheng W J, et al. Materials Reports, 2022, 36(14), 56 (in Chinese).
种振曾,孙耀宁,程旺军,等. 材料导报, 2022, 36(14), 56.
13 Han S Y, Sun Y N, Xu Y F, et al. Rare Metal Materials and Enginee-ring, 2022, 51(2), 607 (in Chinese).
韩晨阳,孙耀宁,徐一飞,等.稀有金属材料与工程, 2022, 51(2), 607.
14 Ma Qing, Lu Bingwen, Zhang Yanmei, et al. Journal Citation Indicator, 2022, 324, 132667.
15 Zou Yongming, Qiu Zhaoguo, Huang Chunjie, et al. Surface and Coa-tings Technology, 2022, 434, 128205.
16 Rogal Łukasz, Kalita Damian, Litynska-Dobrzynska Lidia. Intermetallics, 2017, 86, 104.
17 Zhu Shuaishuai, Yu Yaqiu, Zhang Baosen, et al. Materials Letters, 2020, 272, 127870.
18 Wen Yongwei, Zhou Cunlong, Chai Zelin, et al. Journal of Plasticity Engineering, 2023, 30(1), 94 (in Chinese).
温永威,周存龙,柴泽琳,等. 塑性工程学报, 2023, 30(1), 94.
19 Zhao L Q, Hu H X, Zheng Y G, et al. Colloids and Surfaces A: Physicochemical and Engineering, 2023, 656, 130410.
20 Krishnan A, Lim C Y H. Journal of Materials Research and Technology, 2021, 14, 1052.
21 Li Yanle, Xu Tongming, Li Fangyi, et al. Journal of Mechanical Engineering, 2023, 59(13), 343 (in Chinese).
李燕乐,徐同明,李方义,等. 机械工程学报, 2023, 59(13), 343.
22 Wang J, Sun B D, Zhou Y H, et al. Foundry Technology,1998(3), 37 (in Chinese).
王俊,孙宝德,周尧和,等.铸造技术, 1998(3), 37.
23 Lu Zhaoxia, Mao Yunlei, Ren Siming, et al. Materials Characterization, 2021, 176, 111115.
24 Zhang Shiyi, Han Bin, Li Meiyan, et al. Intermetallics,2021, 131, 107111.
25 León C A,Drew R A L . Composites Part A-Applied Science and Manufacturing, 2002, 33, 1429.
26 Zhang S X, Di P, Xu M K, et al. China Surface Engineering, 2016, 29(1), 46 (in Chinese).
张生欣,狄平,徐梦廓,等. 中国表面工程, 2016, 29(1), 46.
27 Gong F B, Shen J, Gao R H, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(8), 2117 (in Chinese).
28 Zhu G X, Zhang A F, Li D C. Chinese Journal of Lasers,2010, 37(1), 296 (in Chinese).
朱刚贤,张安峰,李涤尘. 中国激光, 2010, 37(1), 296.
29 Yu C X, Jing C N, Li H X. Aeronautical Manufacturing Technology, 2012(4), 75 (in Chinese).
于承雪,景财年,李怀学. 航空制造技术, 2012(4), 75.
30 Huang S M. Equipment Manufacturing Technology, 2007(11), 126 (in Chinese).
黄尚猛. 装备制造技术, 2007(11), 126.
31 Buszko M H, Krella A K, Marchewicz A, et al. Tribology International, 2021, 153, 106648.
32 Bhupinder Singh, Sunny Zafar. Vacuum, 2021, 184, 109946.
33 Kishor B, Chaudhari G P, Nath S K. Tribology International, 2018, 119, 411.
34 Vikrant Singh, Anil Kumar Singla. Tribology International, 2022, 176, 107874.
35 Jiang S Y, Lin Z F, Xu H M. Chinese Journal of Rare Metals, 2018, 42(12), 1241 (in Chinese).
蒋淑英,林志峰,许红明. 稀有金属, 2018, 42(12), 1241.
[1] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[2] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[3] 张明晨, 郭瑞鹏, 张勇. 高熵硬质合金WC-AlCo0.4CrFeNi2.7的制备及表征[J]. 材料导报, 2024, 38(4): 22060288-6.
[4] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[5] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[6] 肖华强, 尹星贵, 冯进宇, 肖易, 龚玉婷. TC4钛合金表面激光熔覆Ti-Mo-Al-B复合涂层的组织及摩擦磨损性能[J]. 材料导报, 2024, 38(12): 22080075-6.
[7] 曹炜鹏, 李杰, 孙小斌, 吴凯迪, 万德成, 冯运莉. CoCrFeMnNi系高熵合金制备技术研究现状[J]. 材料导报, 2024, 38(11): 23090146-12.
[8] 易慧, 吴长军, 周琛, 刘亚, 陆晓旺, 苏旭平. Al-Cr-Fe-Mn-Ni高熵合金中的L21相的相稳定性及其性能研究[J]. 材料导报, 2024, 38(11): 23010014-9.
[9] 陈飞寰, 蔡召兵, 董颖辉, 林广沛, 张坡, 卢冰文, 古乐. 激光熔覆NbMoTaWV难熔高熵合金涂层的高温氧化行为[J]. 材料导报, 2024, 38(10): 22110117-8.
[10] 李权威, 刘乐乐, 赵丕琪, 于有良, 邵明军, 芦令超. 氟硅树脂基超疏水涂层的组成设计及性能评价[J]. 材料导报, 2023, 37(9): 21090111-7.
[11] 李素丽, 马恺悦, 冯高磊, 熊杰, 李连强. 激光熔覆同路送丝光路结构设计及分析[J]. 材料导报, 2023, 37(6): 21090270-6.
[12] 畅庚榕, 刘明霞, 孟瑜, 郭岩, 马大衍, 李世亮, 徐可为. H13钢表面同质激光熔覆中WC微合金化行为及摩擦学性能研究[J]. 材料导报, 2023, 37(22): 22030041-6.
[13] 黄留飞, 孙耀宁. 高强韧高熵合金的变形行为研究进展[J]. 材料导报, 2023, 37(20): 22030168-10.
[14] 赵燕春, 张林浩, 师自强, 李文生, 张东, 寇生中. 304不锈钢表面激光熔覆铁基中熵合金涂层组织性能研究[J]. 材料导报, 2023, 37(19): 22050201-7.
[15] 王整, 蔡召兵, 陈飞寰, 董颖辉, 张坡, 陈娟, 古乐, 曾良才. 环境和法向载荷对(TiVCrAlMo)N高熵合金薄膜摩擦学性能的影响[J]. 材料导报, 2023, 37(18): 22050049-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed