Abstract: This work synthesized a three-block amphiphilic polymers mPEG-P(LL/LL-LA)-PCL-IR820 based on polylysine, in which lysine chain provided reaction sitesfor cross-linking reagent maleic anhydride (LA), and the hydrophobic chain segment polycaprolactone (PCL) provided feasibility for physical encapsulation of anticancer drug doxorubicin (DOX). Subsequently, the photosensitizer IR820 was grafted onto PCL to obtain mPEG-P(LL/LL-LA)-PCL-IR820 via ester bonding. The drug-loaded un-crosslinked micelles (DUCM) were fabricated by solvent evaporation method, and the drug-loaded crosslinked micelles (DCM) were prepared through LA crosslinking induced by the cross-linking inducer dithiothreitol (DTT). Due to the internal crosslinking structure, DCM remained stable after injection and blood circulation. Once entering the tumor cells, the disulfide bond in LA broke down under high concentration of glutathione (GSH) in tumor cells and DOX was rapidly released, which avoided the premature degradation of the uncrosslinked micelles (DUCM) induced by the shear force and protein adsorption and the non-specific distribution of the drug in the body. As a result, the crosslinked micelles showed excellent cytotoxicity to cancer cells combined chemotherapy with photodynamic therapy, which is a promising research in drug delivery system.
通讯作者:
* 唐昭敏,西南石油大学新能源与材料学院高级实验师,博士,硕士研究生导师。主要从事新型功能纳米材料在抗肿瘤方面的研究。作为课题组负责人主持国家自然科学基金青年基金和四川省科技厅青年基金,以第一作者及通信作者在Biomaterials、Advanced Healthcare Materials、Acta Biomaterialia、Separation and Purification、Microporous and Mesoporous Materials、Molecular Pharmaceutics、European Journal of Pharmaceutics and Biopharmaceutics等高水平期刊上发表多篇SCI论文。tl8687@163.com
1 Zhang Z, Wang L, Wang J, et al. Advanced Materials, 2012, 24 (11), 1418. 2 Cai Y, Deng T, Pan Y, et al. Advanced Functional Materials, 2020, 30 (39), 2002868. 3 Chen W, Zeng K, Liu, H. Advanced Functional Materials, 2017, 27 (11), 1605795. 4 Dikmen G, Ünver H. Journal of Molecular Structure, 2021, 1225, 129139. 5 Lin C Y, Shieh M J. Bioconjugate Chemistry, 2018, 29 (4), 1384. 6 Overchuk M, Zheng G. Biomaterials, 2018, 156, 217. 7 Palanisamy S, Huang S, Zhao H, et al. Journal of Materials Chemistry B, 2020, 8 (1), 38. 8 Sun Q, Zhou Z, Qiu N, et al. Advanced Materials, 2017, 29 (14), 1606628. 9 Wang Y, Yan J, Wen N, et al. Biomaterials, 2020, 230, 119619. 10 Zhang P, Zhang Y, Ding X, et al. Advanced Materials, 2020, 32 (46), e2000013. 11 Elsabahy M, Heo G S, Lim M, et al. Chemical Reviews, 2015, 115 (19), 10967. 12 Ghosh B, Biswas S. Journal of Controlled Release, 2021, 332, 127. 13 Guo Z, He H, Zhang Y, et al. Advanced Materials, 2021, 33 (2), e2004225. 14 Jia Q Y, Ge J C, Liu W M, et al. Advanced Materials, 2018, 30 (13), e1706090. 15 Lim C, Ramsey J D, Hwang D, et al. Small, 2022, 18 (4), e2103552. 16 Liu Y, Fens M, Capomaccio R B, et al. Journal of Controlled Release, 2020, 328, 942. 17 Ji Y, Sun Y, Hei M, et al. Biomacromolecules, 2022, 23 (3), 937. 18 Liu Y, Wang J, Xiong Q, et al. Accounts of Chemical Research, 2021, 54 (2), 291. 19 Wang Z, Yu L, Wang Y, et al. Advanced Science, 2022, 9(8), e2104793. 20 Wankar J, Kotla N G, Gera S, et al. Advanced Functional Materials, 2020, 30 (44). 21 Zhang S, Zhu P, He J, et al. Advanced Healthcare Materials, 2020, 9 (18), e2000387. 22 Dai Y, Su J, Wu K, et al. ACS Applied Materials & Interfaces, 2019, 11 (11), 10540. 23 Gu Z, Zhu S, Yan L, et al. Advanced Materials, 2019, 31 (9), e1800662.