Abstract: Recently, the fabrications and self-assembly behavior of colloidal particles with asymmetric, namely anisotropic structure, have gained great attraction. Janus particles (JPs) represent a kind of typical anisotropic colloidal particles, which exhibit different physical or chemical properties on both sides. Meanwhile, JPs show great application potential in many fields such as physics, chemistry and biological science, and the related research has attracted extensive attention. Janus micelles (JMs) are a kind of ‘soft' JPs fabricated by the self-assembly of block copolymer, and each hemisphere of JMs' corona is formed by one component. At present, JMs have been constructed by researchers from bulk and solution self-assembly of block copolymers. As the limited types of block copolymers, cumbersome and time-consuming process when constructing JMs by bulk self-assembly, block copolymer solution self-assembly becomes the main way. Considering the difficulty of the process with self-assembly of copolymers in solution, the fabrication of JMs is still of great challenge. This review summarizes the methods and fabrication mechanism of JMs with the self-assembly of triblock, diblock and star block copolymers during the last decade, followed by the introduction of the applications of JMs and the latest approaches for fabricating JMs. Finally, the problems and challenges are discussed to looking forward to the future development trend in the field of JMS.
1 Hou W M, Zhong W, Zhao H Y. Macromolecules, 2021, 54(6), 261. 2 Qu N, Luo Z, Zhao S P, et al. Journal of the American Chemical Society, 2021, 143(6), 1790. 3 Li C, Peng H J, Cai J D, et al. Advanced Materials, 2021, 33(31), 2102930. 4 de Gennes P. Angewandte Chemie International Edition, 1992, 31(7), 842. 5 Li X S, Chen L G, Cui D, et al. Coordination Chemistry Reviews, 2022, 454, 214318. 6 Walther A, Müller A H E. Soft Matter, 2008, 4(4), 663. 7 Frank B D, Perovic M, Djalali S, et al. ACS Applied Materials & Interfaces, 2021, 13(27), 32510. 8 Seyni F I, Grady B P. Colloid and Polymer Science, 2021, 229(4), 585. 9 Tan J S J, Wong C H, Chen Z. Langmuir, 2021, 37(27), 8167. 10 Zhang X, Fu Q R, Duan H W, et al. ACS Nano, 2021, 15(4), 6147. 11 Jiang S, Granick S. Janus particle synthesis, self-assembly and applications, The Royal Society of Chemistry, UK, 2012, pp.1. 12 Hu J, Zhou S, Sun Y, et al. Chemical Society Reviews, 2012, 41(11), 4356. 13 Walther A, Müller A H E. Chemical Reviews, 2013, 113(7), 5194. 14 Pang X C, Wan C S, Wang M Y, et al. Angewandte Chemie International Edition, 2014, 53(22), 5524. 15 Zhang J, Grzybowski B A, Steve Granick S. Langmuir, 2017, 33(28), 6964. 16 Nakazawa H, Ohta T. Macromolecules, 1993, 26(20), 5503. 17 Zheng W, Wang Z. Macromolecules, 1995, 28(21), 7215. 18 Auschra C, Stadler R. Macromolecules, 1993, 26(9), 2171. 19 Krappe U, Stadler R, Voigt-Martin I. Macromolecules, 1995, 28(13), 4558. 20 Stadler R, Auschra C, Beckmann J, et al. Macromolecules, 1995, 28(9), 3080. 21 Brinkmann S, Stadler R, Thomas E L. Macromolecules, 1998, 31(19), 6566. 22 Saito R, Fujita A, Ichimura A, et al. Journal of Polymer Science, Part A:Polymer Chemistry, 2000, 38(11), 2091. 23 Erhardt R, Böker A, Zettl H, et al. Macromolecules, 2001, 34(4), 1069. 24 Liu Y F, Abetz V, Müller A H E. Macromolecules, 2003, 36(21), 7894. 25 Walther A, André X, Drechsler M, et al. Journal of the American Chemical Society, 2007, 129(19), 6187. 26 Wolf A, Walther A, Müller A H E. Macromolecules, 2011, 44(23), 9221. 27 Erhardt R, Zhang M, Böker A, et al. Journal of the American Chemical Society, 2003, 125(11), 3260. 28 Walther A, Drechsler M, Müller A H E. Soft Matter, 2009, 5(2), 385. 29 Cheng L, Zhang G Z, Zhu L, et al. Angewandte Chemie International Edition, 2008, 47(52), 10171. 30 Wurm F, König H M, Hilf S, et al. Journal of the American Chemical Society, 2008, 130(18), 5876. 31 Li X, Yang H, Xu L M, et al. Macromolecular Chemistry and Physics, 2010, 211(3), 297. 32 Gröschel A H, Walther A, Löbling T I, et al. Journal of the American Chemical Society, 2012, 134(33), 13850. 33 Charlaganov M, Borisov O V, Leermakers F A M. Macromolecules, 2008, 41(10), 3668. 34 Gröschel A H, Schacher F H, Schmalz H, et al. Nature Communications, 2012, 3, 710. 35 Gröschel A H, Walther A, Löbling T I, et al. Nature, 2013, 503(7475), 247. 36 Zhang W, He J X, Bao H F, et al. RSC Advances, 2015, 5(126), 104223. 37 Du J Z, O'Reilly R K. Chemical Society Reviews, 2011, 40(5), 2402. 38 Skrabania K, Berlepsch H V, Böttcher C, et al. Macromolecules, 2010, 43(1), 271. 39 Marsat J N, Heydenreich M, Kleinpeter E, et al. Macromolecules, 2011, 44(7), 2092. 40 Poggi E, Bourgeois J P, Ernould B, et al. RSC Advances, 2015, 5(55), 44218. 41 Christian D A, Tian A, Ellenbroek W G, et al. Nature Materials, 2009, 8(10), 843. 42 Halperin A. Journal de Physique (Paris), 1988, 49(1), 131. 43 Voets I K, de Keizer A, de Waard P, et al. Angewandte Chemie International Edition, 2006, 45(40), 6673. 44 Voets I K, Fokkink R, de Keizer A, et al. Langmuir, 2008, 24(21), 12221. 45 Voets I K, Fokkink R, Hellweg T, et al. Soft Matter, 2009, 5(5), 999. 46 Voets I K, Leermakers F A, de Keizer A, et al. Advances in Polymer Science, 2010, 214, 163. 47 Zhang Z, Li H D, Huang X Y, et al. ACS Macro Letters, 2017, 6(6), 580. 48 Kiriy A, Gorodyska G, Minko S, et al. Macromolecules, 2003, 36(23), 8704. 49 Steinschulte A A, Schulte B, Erberich M, et al. ACS Macro Letters, 2012, 1(4), 504. 50 Cheng L, Hou G L, Miao J J, et al. Macromolecules, 2008, 41(21), 8159. 51 Zhou F, Xie M X, Chen D Y. Macromolecules, 2014, 47(1), 365. 52 Wen W, Chen A H. Polymer Chemistry, 2021, 12(16), 2447. 53 Walther A, Barner-Kowollik C, Müller A H E. Langmuir, 2010, 26(14), 12237. 54 Walther A, Matussek K, Müller A H E. ACS Nano, 2008, 2(6), 1167. 55 Bryson K C, Löbling T I, Müller A H E, et al. Macromolecules, 2015, 48(12), 4220. 56 Bahrami R, Löbling T I, Gröschel A H, et al. ACS Nano, 2014, 8(10), 10048. 57 Walther A, Hoffmann M, Müller A H E. Angewandte Chemie International Edition, 2008, 47(4), 711. 58 Groöschel A H, Löbling T I, Petrov P D, et al. Angewandte Chemie International Edition, 2013, 52(13), 3602. 59 Li H M, Zhang A D, Li K, et al. Materials Chemistry Frontiers, 2018, 2(5), 1040. 60 Qiang X L, Franzka S, Quintieri G, et al. Angewandte Chemie International Edition, 2021, 60(40), 21668. 61 Hils C, Schmelz J, Drechsler M, et al. Journal of the American Chemical Society, 2021, 143(38), 15582. 62 Synytska A, Ionov L. Particle & Particle Systems Characterization, 2013, 30(11), 922. 63 Haney B, Werner J G, Weitz D A, et al. Soft Matter, 2020, 16(15), 3613. 64 Liu Y X, Jessop P G, Cunningham M, et al. Science, 2006, 313(5789), 958. 65 Zhang Y M, Feng Y J. Current Opinion in Colloid & Interface Science, 2020, 49, 27.