Please wait a minute...
材料导报  2023, Vol. 37 Issue (10): 21120086-8    https://doi.org/10.11896/cldb.21120086
  高分子与聚合物基复合材料 |
两面神胶束的构筑及应用
刘恒昌*, 陈凯*
南昌师范学院化学与食品科学学院,南昌 330032
Fabrications and Applications of Janus Micelles
LIU Hengchang*, CHEN Kai*
School of Chemistry and Food Science, Nanchang Normal University, Nanchang 330032, China
下载:  全 文 ( PDF ) ( 41686KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近几年,具有不对称结构(即各向异性)的胶体颗粒的构筑及自组装行为越来越引起人们的研究兴趣。两面神颗粒(Janus particles,JPs)是指两侧具有不同物理或化学等性质的颗粒,故它是一种典型的各向异性的胶体粒子。JPs在物理、化学和生物科学等诸多领域表现出巨大的应用潜力,其相关研究受到人们广泛的关注。   两面神胶束(Janus micelles,JMs)是一种通过嵌段共聚物自组装所构筑的“软的”JPs,其冠的两个半球分别由两种组分形成。目前,研究人员已经分别通过嵌段共聚物的本体和溶液自组装构筑了JMs。由于本体自组装构筑JMs所能用的嵌段共聚物种类非常有限,同时构筑过程繁琐且耗时,无法大规模应用,故嵌段共聚物溶液自组装是构筑JMs最主要的方式。但是,共聚物在溶液中自组装形成JMs绝非易事,因此目前构筑JMs依旧面临一定困难。   本文综述了JMs领域近10多年的研究进展,重点归纳和总结了基于三嵌段、二嵌段、星型嵌段共聚物自组装构筑JMs的方法与形成机理,介绍了JMs的应用现状及构筑JMs的最新手段和方法,最后探讨了JMs领域存在的问题和挑战,并对JMs未来的发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘恒昌
陈凯
关键词:  两面神胶束  两面神颗粒  自组装  嵌段共聚物  软物质    
Abstract: Recently, the fabrications and self-assembly behavior of colloidal particles with asymmetric, namely anisotropic structure, have gained great attraction. Janus particles (JPs) represent a kind of typical anisotropic colloidal particles, which exhibit different physical or chemical properties on both sides. Meanwhile, JPs show great application potential in many fields such as physics, chemistry and biological science, and the related research has attracted extensive attention. Janus micelles (JMs) are a kind of ‘soft' JPs fabricated by the self-assembly of block copolymer, and each hemisphere of JMs' corona is formed by one component. At present, JMs have been constructed by researchers from bulk and solution self-assembly of block copolymers. As the limited types of block copolymers, cumbersome and time-consuming process when constructing JMs by bulk self-assembly, block copolymer solution self-assembly becomes the main way. Considering the difficulty of the process with self-assembly of copolymers in solution, the fabrication of JMs is still of great challenge. This review summarizes the methods and fabrication mechanism of JMs with the self-assembly of triblock, diblock and star block copolymers during the last decade, followed by the introduction of the applications of JMs and the latest approaches for fabricating JMs. Finally, the problems and challenges are discussed to looking forward to the future development trend in the field of JMS.
Key words:  Janus micelles    Janus particles    self-assembly    block copolymers    soft matter
出版日期:  2023-05-25      发布日期:  2023-05-23
ZTFLH:  O648.1  
基金资助: 江西省教育厅科学技术研究项目(GJJ191121;GJJ161238);南昌师范学院博士科研启动项目(NSBSJJ2018020;NSBSJJ2015024)
通讯作者:  *刘恒昌,南昌师范学院讲师。2018年博士毕业于中国科学院成都有机化学研究所,同年任教于南昌师范学院化学与食品科学学院,现已发表相关论文2篇,主要从事聚合物自组装的研究。
陈凯,南昌师范学院讲师。2015年博士毕业于北京师范大学,同年任教于南昌师范学院化学与食品科学学院,已发表相关论文7篇,主要从事胶体与界面化学研究。hengchangliu@ncnu.edu.cn;chenkai@mail.bnu.edu.cn   
引用本文:    
刘恒昌, 陈凯. 两面神胶束的构筑及应用[J]. 材料导报, 2023, 37(10): 21120086-8.
LIU Hengchang, CHEN Kai. Fabrications and Applications of Janus Micelles. Materials Reports, 2023, 37(10): 21120086-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120086  或          http://www.mater-rep.com/CN/Y2023/V37/I10/21120086
1 Hou W M, Zhong W, Zhao H Y. Macromolecules, 2021, 54(6), 261.
2 Qu N, Luo Z, Zhao S P, et al. Journal of the American Chemical Society, 2021, 143(6), 1790.
3 Li C, Peng H J, Cai J D, et al. Advanced Materials, 2021, 33(31), 2102930.
4 de Gennes P. Angewandte Chemie International Edition, 1992, 31(7), 842.
5 Li X S, Chen L G, Cui D, et al. Coordination Chemistry Reviews, 2022, 454, 214318.
6 Walther A, Müller A H E. Soft Matter, 2008, 4(4), 663.
7 Frank B D, Perovic M, Djalali S, et al. ACS Applied Materials & Interfaces, 2021, 13(27), 32510.
8 Seyni F I, Grady B P. Colloid and Polymer Science, 2021, 229(4), 585.
9 Tan J S J, Wong C H, Chen Z. Langmuir, 2021, 37(27), 8167.
10 Zhang X, Fu Q R, Duan H W, et al. ACS Nano, 2021, 15(4), 6147.
11 Jiang S, Granick S. Janus particle synthesis, self-assembly and applications, The Royal Society of Chemistry, UK, 2012, pp.1.
12 Hu J, Zhou S, Sun Y, et al. Chemical Society Reviews, 2012, 41(11), 4356.
13 Walther A, Müller A H E. Chemical Reviews, 2013, 113(7), 5194.
14 Pang X C, Wan C S, Wang M Y, et al. Angewandte Chemie International Edition, 2014, 53(22), 5524.
15 Zhang J, Grzybowski B A, Steve Granick S. Langmuir, 2017, 33(28), 6964.
16 Nakazawa H, Ohta T. Macromolecules, 1993, 26(20), 5503.
17 Zheng W, Wang Z. Macromolecules, 1995, 28(21), 7215.
18 Auschra C, Stadler R. Macromolecules, 1993, 26(9), 2171.
19 Krappe U, Stadler R, Voigt-Martin I. Macromolecules, 1995, 28(13), 4558.
20 Stadler R, Auschra C, Beckmann J, et al. Macromolecules, 1995, 28(9), 3080.
21 Brinkmann S, Stadler R, Thomas E L. Macromolecules, 1998, 31(19), 6566.
22 Saito R, Fujita A, Ichimura A, et al. Journal of Polymer Science, Part A:Polymer Chemistry, 2000, 38(11), 2091.
23 Erhardt R, Böker A, Zettl H, et al. Macromolecules, 2001, 34(4), 1069.
24 Liu Y F, Abetz V, Müller A H E. Macromolecules, 2003, 36(21), 7894.
25 Walther A, André X, Drechsler M, et al. Journal of the American Chemical Society, 2007, 129(19), 6187.
26 Wolf A, Walther A, Müller A H E. Macromolecules, 2011, 44(23), 9221.
27 Erhardt R, Zhang M, Böker A, et al. Journal of the American Chemical Society, 2003, 125(11), 3260.
28 Walther A, Drechsler M, Müller A H E. Soft Matter, 2009, 5(2), 385.
29 Cheng L, Zhang G Z, Zhu L, et al. Angewandte Chemie International Edition, 2008, 47(52), 10171.
30 Wurm F, König H M, Hilf S, et al. Journal of the American Chemical Society, 2008, 130(18), 5876.
31 Li X, Yang H, Xu L M, et al. Macromolecular Chemistry and Physics, 2010, 211(3), 297.
32 Gröschel A H, Walther A, Löbling T I, et al. Journal of the American Chemical Society, 2012, 134(33), 13850.
33 Charlaganov M, Borisov O V, Leermakers F A M. Macromolecules, 2008, 41(10), 3668.
34 Gröschel A H, Schacher F H, Schmalz H, et al. Nature Communications, 2012, 3, 710.
35 Gröschel A H, Walther A, Löbling T I, et al. Nature, 2013, 503(7475), 247.
36 Zhang W, He J X, Bao H F, et al. RSC Advances, 2015, 5(126), 104223.
37 Du J Z, O'Reilly R K. Chemical Society Reviews, 2011, 40(5), 2402.
38 Skrabania K, Berlepsch H V, Böttcher C, et al. Macromolecules, 2010, 43(1), 271.
39 Marsat J N, Heydenreich M, Kleinpeter E, et al. Macromolecules, 2011, 44(7), 2092.
40 Poggi E, Bourgeois J P, Ernould B, et al. RSC Advances, 2015, 5(55), 44218.
41 Christian D A, Tian A, Ellenbroek W G, et al. Nature Materials, 2009, 8(10), 843.
42 Halperin A. Journal de Physique (Paris), 1988, 49(1), 131.
43 Voets I K, de Keizer A, de Waard P, et al. Angewandte Chemie International Edition, 2006, 45(40), 6673.
44 Voets I K, Fokkink R, de Keizer A, et al. Langmuir, 2008, 24(21), 12221.
45 Voets I K, Fokkink R, Hellweg T, et al. Soft Matter, 2009, 5(5), 999.
46 Voets I K, Leermakers F A, de Keizer A, et al. Advances in Polymer Science, 2010, 214, 163.
47 Zhang Z, Li H D, Huang X Y, et al. ACS Macro Letters, 2017, 6(6), 580.
48 Kiriy A, Gorodyska G, Minko S, et al. Macromolecules, 2003, 36(23), 8704.
49 Steinschulte A A, Schulte B, Erberich M, et al. ACS Macro Letters, 2012, 1(4), 504.
50 Cheng L, Hou G L, Miao J J, et al. Macromolecules, 2008, 41(21), 8159.
51 Zhou F, Xie M X, Chen D Y. Macromolecules, 2014, 47(1), 365.
52 Wen W, Chen A H. Polymer Chemistry, 2021, 12(16), 2447.
53 Walther A, Barner-Kowollik C, Müller A H E. Langmuir, 2010, 26(14), 12237.
54 Walther A, Matussek K, Müller A H E. ACS Nano, 2008, 2(6), 1167.
55 Bryson K C, Löbling T I, Müller A H E, et al. Macromolecules, 2015, 48(12), 4220.
56 Bahrami R, Löbling T I, Gröschel A H, et al. ACS Nano, 2014, 8(10), 10048.
57 Walther A, Hoffmann M, Müller A H E. Angewandte Chemie International Edition, 2008, 47(4), 711.
58 Groöschel A H, Löbling T I, Petrov P D, et al. Angewandte Chemie International Edition, 2013, 52(13), 3602.
59 Li H M, Zhang A D, Li K, et al. Materials Chemistry Frontiers, 2018, 2(5), 1040.
60 Qiang X L, Franzka S, Quintieri G, et al. Angewandte Chemie International Edition, 2021, 60(40), 21668.
61 Hils C, Schmelz J, Drechsler M, et al. Journal of the American Chemical Society, 2021, 143(38), 15582.
62 Synytska A, Ionov L. Particle & Particle Systems Characterization, 2013, 30(11), 922.
63 Haney B, Werner J G, Weitz D A, et al. Soft Matter, 2020, 16(15), 3613.
64 Liu Y X, Jessop P G, Cunningham M, et al. Science, 2006, 313(5789), 958.
65 Zhang Y M, Feng Y J. Current Opinion in Colloid & Interface Science, 2020, 49, 27.
[1] 张壹霖, 腾凡, 高庆, 杨婷婷. 基于RAFT调控的聚合诱导自组装研究进展[J]. 材料导报, 2022, 36(Z1): 22030070-5.
[2] 戴飞亮, 付子恩, 蒋金博, 涂伟萍. 有机硅(碳)嵌段共聚物的合成及其应用研究进展[J]. 材料导报, 2022, 36(9): 20070144-12.
[3] 杨方平, 宋子元, 殷黎晨, 唐浩宇, 程建军. 聚氨基酸材料的研究进展[J]. 材料导报, 2022, 36(3): 21080287-18.
[4] 刘均澔, 李文兵, 龚韬, 魏婉婷, 钱坤. 形状记忆微/纳米图案的设计、应用和发展[J]. 材料导报, 2022, 36(23): 20100218-10.
[5] 李慧姝, 卢豪, 顾宇红. 聚合物刷在溶剂中的自组装行为及弹性响应[J]. 材料导报, 2022, 36(15): 21030320-5.
[6] 武彧, 刘家成. 不同类型锌卟啉自组装染料敏化太阳能电池[J]. 材料导报, 2021, 35(z2): 479-482.
[7] 薛敏, 张祥, 刘璐, 常文浩, 李蓓蓓. 双组分超分子凝胶材料的形成机理及流变性能[J]. 材料导报, 2021, 35(8): 8201-8206.
[8] 朱浩彤, 刘玲伟, 闫铭, 张鸿, 郭静, 夏英. 纤维气凝胶的分类、制备工艺及应用现状[J]. 材料导报, 2021, 35(23): 23057-23067.
[9] 卢爽, 刘琳, 谢锦印, 武亚琪, 邢锦娟. 2-氨基苯并咪唑缩对甲基苯甲醛席夫碱的合成及缓蚀性能[J]. 材料导报, 2021, 35(20): 20195-20199.
[10] 王艳坤. 四氧化三铁/石墨烯纳米复合材料的静电自组装制备及储锂性能[J]. 材料导报, 2021, 35(16): 16008-16014.
[11] 龙涛, 杨新国, 李丝雨, 王影, 毛凤余. 二元溶剂体系对含仲胺基团苝酰亚胺衍生物自组装与光电性能的影响[J]. 材料导报, 2021, 35(10): 10176-10183.
[12] 冯伟丽, 康兴隆, 柳妍, 鲁哲宏, 刘保英, 房晓敏, 丁涛. 层层自组装改性剑麻纤维填充聚丙烯复合材料性能研究[J]. 材料导报, 2021, 35(10): 10211-10215.
[13] 何祖宇, 谢江辉, 李普旺, 屈云慧, 杨子明, 于丽娟, 王超, 刘运浩, 姚全胜, 周闯. 两亲性壳聚糖自组装纳米微球的制备及抗真菌性能研究[J]. 材料导报, 2020, 34(Z2): 501-506.
[14] 赖宇明, 高雅, 要秀全. 纳米尺度自组装相互作用力研究进展[J]. 材料导报, 2020, 34(7): 7091-7098.
[15] 付念, 谷雨, 郭雨, 张建飞, 陈道俊, 刘啸宇, 丛日东. Fe掺杂AlN纳米线/三维片层复合分级纳米结构的自组装生长[J]. 材料导报, 2020, 34(12): 12036-12039.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed