Please wait a minute...
材料导报  2023, Vol. 37 Issue (10): 21110251-6    https://doi.org/10.11896/cldb.21110251
  高分子与聚合物基复合材料 |
高温下SiO2气凝胶改性地聚合物的物理力学性能研究
马彬1, 衣兆林1, 牛海华1,2,*, 黄启钦1
1 桂林电子科技大学建筑与交通工程学院,广西 桂林 541004
2 烟台南山学院工程管理系,山东 烟台 265713
Physical and Mechanical Properties of SiO2 Aerogel Modified Geopolymer at High Temperature
MA Bin1, YI Zhaolin1, NIU Haihua1,2,*, HUANG Qiqin1
1 School of Architecture and Traffic Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
2 Department of Engineering Management, Yantai Nanshan University, Yantai 265713, Shandong, China
下载:  全 文 ( PDF ) ( 42667KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以偏高岭土和矿渣为主要原材料制备SiO2气凝胶改性地聚合物,分析了温度对其抗压强度、质量损失率及微观结构的影响规律,建立了不同温度下残余抗压强度的热-力学模型。结果表明:随着温度的升高,试样外观形貌均是先收缩后开裂,其中亲水组试样的失水情况有明显改善。试样质量损失率随温度升高呈上升趋势,大致分为极速失水、缓慢失水、快速失水三个阶段。此外,抗压强度随着温度升高呈下降趋势,在600 ℃以下,抗压强度先突降,后变缓;在600~800 ℃之间,抗压强度再次下降,并趋于稳定。其中,不同温度下基准组试样的质量损失率最高,亲水组试样的抗压强度最高。在此基础上,采用统计回归分析方法建立了不同温度下精确的残余抗压强度热-力学模型,拟合优度达0.9以上。由微观分析可知,亲水性气凝胶具有良好的锁水性能,致使温度对亲水组试样微观结构的影响较小。不同温度下试样的失水机制可大致分为三个阶段:低于400 ℃时试样以失去自由水为主,600 ℃时试样中的结合水开始脱出,800 ℃时试样出现瓷化现象。可见,亲水性气凝胶对地聚合物的高温物理力学性能具有明显的改善效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马彬
衣兆林
牛海华
黄启钦
关键词:  地聚合物  SiO2气凝胶  温度  物理力学性能  热-力学模型    
Abstract: SiO2 aerogel modified geopolymer was prepared with metakaolin and slag as the main raw materials. Meanwhile the influence of temperature on its compressive strength, mass loss rate and microstructure were analyzed, and a thermo-mechanical model of residual compressive strength at different temperatures was established. The results show that the phenomenon is that as the temperature increases, the specimens are first contraction and then cracking, where the water loss of specimens in the hydrophilic group is significantly improved. Another, the mass loss rate tends to increase with the increase of temperature, and is roughly divided into three stages:extreme water loss, slow water loss and rapid water loss. In addition, the compressive strength tends to decrease as the temperature rises. Below 600 ℃, the compressive strength first drops abruptly, and then the trend becomes slower. At 600—800 ℃, the compressive strength drops again and tends to be stable. Among them, the highest mass loss rate is found in the specimens of the reference group at different temperatures, and the highest compressive strength is found in the specimens of the hydrophilic group. Furthermore, an accurate thermo-mechanical model of the residual compressive strength at different temperatures is established by statistical regression analysis method, with a goodness of fit above 0.9.At last, the microscopic analysis shows that the temperature has less influence on the microstructure of hydrophilic group specimens due to the good water locking property of hydrophilic aerogel. As the temperature increases, the water loss mechanism of the specimen can be divided into three stages:the specimens lose free water predominantly below 400 ℃, the bound water starts to come off at 600 ℃, and the porcelainization phenomenon occurs at 800 ℃. Obviously, hydrophilic aerogels have an obvious improvement effect on the high-temperature physical and mechanical properties of geopolymer.
Key words:  geopolymer    SiO2 aerogel    temperature    physical and mechanical properties    thermo-mechanical model
出版日期:  2023-05-25      发布日期:  2023-05-23
ZTFLH:  TU528.34  
基金资助: 国家自然科学基金(51968011);广西科技基地和人才专项(AD19245143);桂林电子科技大学研究生教育创新计划资助项目(2022YCXS230)
通讯作者:  *牛海华,烟台南山学院工程管理系教师。2021年6月桂林电子科技大学交通运输工程专业毕业.获工程硕士学位。目前主要从事建筑节能材料和道路工程材料方向的研究工作.在国内外学术期刊发表论文6篇。niuhaihua0958@163.com   
作者简介:  马彬,桂林电子科技大学建筑与交通工程学院高级实验师、硕士研究生导师。2016年中南大学工程力学专业毕业,获工学博士学位。目前主要从事建筑节能材料和计算力学的研究,在国内外学术期刊发表论文10余篇。
引用本文:    
马彬, 衣兆林, 牛海华, 黄启钦. 高温下SiO2气凝胶改性地聚合物的物理力学性能研究[J]. 材料导报, 2023, 37(10): 21110251-6.
MA Bin, YI Zhaolin, NIU Haihua, HUANG Qiqin. Physical and Mechanical Properties of SiO2 Aerogel Modified Geopolymer at High Temperature. Materials Reports, 2023, 37(10): 21110251-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110251  或          http://www.mater-rep.com/CN/Y2023/V37/I10/21110251
1 Xu Q B, Jiang X B, Liu X Z. Advanced Materials Industry, 2021(2), 43 (in Chinese).
徐勤保, 江旭波, 刘新状. 新材料产业, 2021(2), 43.
2 Miao S L, Li Q T, Zhao Y Y, et al. Journal of Basic Science and Engineering, 2021, 29(4), 999 (in Chinese).
苗生龙, 李庆涛, 赵园园, 等. 应用基础与工程科学学报, 2021, 29(4), 999.
3 Guo J Y, Zhao Y M, Zhang L J, et al. Materials Reports, 2019, 33(S1), 202 (in Chinese).
郭建业, 赵英民, 张丽娟, 等. 材料导报, 2019, 33(S1), 202.
4 Zhu Pinghua, Xu Xiaoyan, Liu Hui, et al. Construction and Building Materials, 2020, 239, 117857.
5 Zhang H Y, Yang J M, Wu H J, et al. Solar Energy, 2020, 204, 569.
6 Liu P, Gong Y F, Tian G, et al. Construction and Building Materials, 2021, 272, 121895.
7 Farhad A. Journal of Materials in Civil Engineering, 2016, 28(1), 04015062.
8 Ma B, Zhu L W, Niu H H, et al. Journal of Materials Science and Engineering, 2021, 39(4), 590 (in Chinese).
马彬, 朱林伟, 牛海华, 等. 材料科学与工程学报, 2021, 39(4), 590.
9 Cao J S. Bulletin of the Chinese Ceramic Society, 2017, 36(4), 1452 (in Chinese).
曹集舒. 硅酸盐通报, 2017, 36(4), 1452.
10 Ma X, Ye X W, Zhu J, et al. Journal of Building Materials, 2017, 20(3), 373 (in Chinese).
马骁, 叶雄伟, 朱杰, 等. 建筑材料学报, 2017, 20(3), 373.
11 Niu H H. Thermal-mechanical properties of calcium-based geopolymers modified by SiO2 aerogel, Master's Thesis, Guilin University of Electronic Technology, China, 2021 (in Chinese).
牛海华. SiO2气凝胶改性钙基地聚合物的热-力学性能研究. 硕士学位论文, 桂林电子科技大学, 2021.
12 GB/T 17671-1999, 水泥胶砂强度检验方法(ISO法), 中国标准出版社, 1999.
13 Zhu J S, Xu J Y, Luo X. Concrete, 2014(8), 8 (in Chinese).
朱靖塞, 许金余, 罗鑫. 混凝土, 2014(8), 8.
14 Li N, Xu Z H, Chen X Y, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(4), 957 (in Chinese).
李娜, 徐中慧, 陈筱悦, 等. 硅酸盐通报, 2019, 38(4), 957.
15 Zheng J R, Liu L N. Journal of Zhengzhou University (Engineering Science), 2007(3), 05 (in Chinese).
郑娟荣, 刘丽娜. 郑州大学学报(工学版), 2007(3), 05.
16 Zheng W Z, Zhu J. Journal of Wuhan University of Technology (Materials Science Edition), 2013, 28(4), 721.
17 William G V S, Ruby M G. Construction and Building Materials, 2017, 154, 229.
18 Gao R, Zhou Z J, Zhang H B, et al. Inorganic Chemicals Industry, 2019, 51(9), 50 (in Chinese).
高睿, 周张健, 张宏博, 等. 无机盐工业, 2019, 51(9), 50.
19 Zhou Y B, Kong G, Lai D L, et al. Aerospace Materials & Technology, 2021, 51(3), 08 (in Chinese).
周颖博, 孔纲, 赖德林, 等. 宇航材料工艺, 2021, 51(3), 08.
20 Bell J L, Driemeyer P E, Kriven W M. Journal of the American Ceramic Society, 2009, 92(1), 01.
21 Zheng K R, Chen L, Mulbah G. Construction and Building Materials, 2016, 125, 1114.
22 Zhang S S, Gao H B, Wang X, et al. Cement Engineering, 2021(1), 7 (in Chinese).
张书石, 高洪波, 王玄, 等. 水泥工程, 2021(1), 7.
23 Kong D L Y, Sanjayan J G. Cement and Concrete Composites, 2008, 30, 986.
24 He P G, Jia D C, Lin T S, et al. Ceramics International, 2010, 36(4), 1447.
25 Abdulkareem O A, Bakri A M A M, Kamarudin H, et al. Construction and Building Materials, 2014, 50, 377.
26 Liu X, Peng Z C, Pan C H, et al. Materials Reports B:Research Papers, 2020, 34(11), 22078 (in Chinese).
刘鑫, 彭泽川, 潘晨豪, 等. 材料导报:研究篇, 2020, 34(11), 22078.
27 Lv T Q, Zhao G F, Lin Z S, et al. Journal of Building Materials, 2003(2), 135 (in Chinese).
吕天启, 赵国藩, 林志伸, 等. 建筑材料学报, 2003(2), 135.
28 Fu B, Yang C H, Ye J X, et al. Journal of Building Materials, 2014, 17(6), 1060(in Chinese).
傅博, 杨长辉, 叶剑雄, 等. 建筑材料学报, 2014, 17(6), 1060.
[1] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[2] 何承绪, 高洁, 毛航银, 马光, 陈新, 祝志祥, 张一航, 胡卓超. 退火温度对耐热型取向硅钢组织与磁性能的影响[J]. 材料导报, 2023, 37(8): 21090231-5.
[3] 卢超, 曹建春, 陈伟, 刘星, 张永青, 阴树标. 再加热温度对Nb微合金化钢筋连续冷却相变及组织与性能的影响[J]. 材料导报, 2023, 37(8): 21100016-8.
[4] 刘维赛, 陈晓怡, 智文科, 王旭泉, 王飞. 镧系金属有机框架化合物在发光传感检测领域的研究进展[J]. 材料导报, 2023, 37(5): 21030231-12.
[5] 李良, 赵修贤, 王彬彬, 杨帅军, 聂永, 蒋绪川. 热致变色过渡金属配合物的变色机理及应用[J]. 材料导报, 2023, 37(4): 21010049-11.
[6] 陈露, 朱琦, 孙旭东. 基于稀土层状氢氧化物的荧光材料研究进展[J]. 材料导报, 2023, 37(3): 22090241-10.
[7] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[8] 钟伟杰, 焦东玲, 邱万奇, 刘仲武. 熔体温度和雾化压力对氩气雾化镍基高温合金粉末的影响[J]. 材料导报, 2023, 37(10): 21070245-6.
[9] 李孝晨, 丁文艺, 朱霄汉, 郑明杰. 基于机器学习的RAFM钢中子辐照脆化预测模型研究[J]. 材料导报, 2023, 37(1): 22010142-7.
[10] 王以霖, 谭毅, 崔传勇, 游小刚, 赵龙海, 崔弘阳, 李鹏廷, 李晓娜. 电子束熔炼新型Ni-Co基高温合金过程中合金元素的挥发行为及熔池温度计算[J]. 材料导报, 2023, 37(1): 21080061-6.
[11] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[12] 王子仪, 张武龙, 王瑞燕, 邓伟新, 吴沂. 石蜡热工介质对混凝土绝热温升的影响[J]. 材料导报, 2022, 36(Z1): 21080274-5.
[13] 陈小丽, 谭敏, 罗文东. 温度对铝锂合金阳极氧化膜结构及耐蚀性的影响[J]. 材料导报, 2022, 36(Z1): 21120067-5.
[14] 林欢, 石启亮, 蔡利海, 刘文言, 李万利. 聚硼硅氧烷剪切增稠凝胶的制备影响因素及其在不同温度下的流变性能研究[J]. 材料导报, 2022, 36(Z1): 21070206-6.
[15] 尹道道, 王海, 张珍杰, 向飞, 王海龙, 纪宪坤. 室外环境下不同尺寸混凝土中膨胀剂的应用效果研究[J]. 材料导报, 2022, 36(Z1): 21110148-4.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed