Please wait a minute...
材料导报  2023, Vol. 37 Issue (10): 21070245-6    https://doi.org/10.11896/cldb.21070245
  金属与金属基复合材料 |
熔体温度和雾化压力对氩气雾化镍基高温合金粉末的影响
钟伟杰1, 焦东玲1, 邱万奇1, 刘仲武1,2,*
1 华南理工大学材料科学与工程学院,广州 510640
2 东莞市精研粉体科技有限公司,广东 东莞 523808
Influence of Melt Temperature and Atomization Pressure on Argon-atomized Nickel-based Superalloy Powder
ZHONG Weijie1, JIAO Dongling1, QIU Wanqi1, LIU Zhongwu1,2, *
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
2 Dongguan Hyper Tech Co., Ltd., Dongguan 523808, Guangdong, China
下载:  全 文 ( PDF ) ( 24350KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用氩气雾化法制备镍基高温合金粉末,通过调控雾化参数,研究了熔体温度(1 585 ℃、1 618 ℃、1 653 ℃)和雾化压力(3.0 MPa、3.2 MPa、3.5 MPa)对粉末粒度、氧含量及空心度的影响。结果表明,熔体温度对粉末空心度有重要影响,而对其他粉末特性没有明显影响。熔体温度升高时,粉末空心度先减小后增加。雾化压力不仅影响空心度,而且影响粉末粒度和氧含量。雾化压力增大时,粉末粒度显著降低,氧含量与空心度先减少后增加。在熔体温度为1 618 ℃、氩气雾化压力为3.2 MPa时可以获得质量较好的合金粉末。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟伟杰
焦东玲
邱万奇
刘仲武
关键词:  高温合金粉末  熔体温度  雾化压力  氧含量  空心度    
Abstract: In this work, the nickel-based superalloy powders were prepared by argon atomization. By changing the atomization parameters, the effects of melt temperature (1 585 ℃, 1 618 ℃, and 1 653 ℃) and atomization pressure (3.0 MPa, 3.2 MPa, and 3.5 MPa) on the particle size, oxygen content and hollowness of the prepared powders were investigated. The results indicated that the melt temperature has an important effect on the hollowness of the powder, but no significant effect on the other powder properties. With the temperature increasing, the hollowness of the powder first decreases and then increases. However, the atomization pressure affects not only the powder hollowness but also the particle size and oxygen content. With the atomization pressure increasing, the powder particle size decreases significantly, and the oxygen content and hollowness first decrease and then increase. The high quality powders can be obtained at the melt temperature of 1 618 ℃ and the atomization pressure of 3.2 MPa.
Key words:  superalloy powder    melt temperature    atomization pressure    oxygen content    hollowness
出版日期:  2023-05-25      发布日期:  2023-05-23
ZTFLH:  TF1  
基金资助: 东莞市引进创新科研团队资助项目(201536000200027)
通讯作者:  *刘仲武,华南理工大学材料科学与工程学院教授、博士研究生导师。1989年中南工业大学金属材料与加工工程专业本科毕业,1993年北京科技大学金属材料及热处理专业硕士毕业,2005年英国谢菲尔德大学工程材料专业博士毕业。主要从事磁性功能材料、粉末冶金和高温合金等方面的研究。发表论文400多篇,包括Advanced Materials、Advanced Functional Materials、JACS、Acta Materials、Applied Physics Letters等。zwliu@scut.edu.cn   
作者简介:  钟伟杰,2014年7月于华南理工大学获得工学学士学位。现为华南理工大学材料科学与工程学院硕博连读博士研究生。主要从事高温合金冶金质量、高温氧化行为及防护等研究。
引用本文:    
钟伟杰, 焦东玲, 邱万奇, 刘仲武. 熔体温度和雾化压力对氩气雾化镍基高温合金粉末的影响[J]. 材料导报, 2023, 37(10): 21070245-6.
ZHONG Weijie, JIAO Dongling, QIU Wanqi, LIU Zhongwu. Influence of Melt Temperature and Atomization Pressure on Argon-atomized Nickel-based Superalloy Powder. Materials Reports, 2023, 37(10): 21070245-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070245  或          http://www.mater-rep.com/CN/Y2023/V37/I10/21070245
1 Zhang G Q, Zhang Y W, Zheng L, et al. Acta Metallurgica Sinica, 2019, 55(9), 1133 (in Chinese).
张国庆, 张义文, 郑亮, 等. 金属学报, 2019, 55(9), 1133.
2 Pollock T M, Tin S. Journal of Propulsion and Power, 2006, 22, 361.
3 Song F Y, Zhang J, Guo H M, et al. Journal of Materials Engineering, 2021, 49(1), 65 (in Chinese).
宋富阳, 张剑, 郭会明, 等. 材料工程, 2021, 49(1), 65.
4 Qu J L, Zhang X L, Yang S F, et al. Powder Metallurgy Industry, 2020, 30(5), 1 (in Chinese).
曲敬龙, 张雪良, 杨树峰, 等. 粉末冶金工业, 2020, 30(5), 1.
5 Hu L X, Feng X Y. Powder Metallurgy Industry, 2018, 28(4), 1 (in Chinese).
胡连喜, 冯小云. 粉末冶金工业, 2018, 28(4), 1.
6 Liu X L, Tao C H. Materials Reports A:Review Papers, 2013, 27(11), 92 (in Chinese).
刘新灵, 陶春虎. 材料导报:综述篇, 2013, 27(11), 92.
7 Hu D Y, Wang T, Ma Q H, et al. International Journal of Fatigue, 2018, 118, 237.
8 Liu X L, Hu C Y, Wang T Y. Fatigue Analysis and Prediction, 2018, 13(2), 89 (in Chinese).
刘新灵, 胡春燕, 王天宇. 失效分析与预防, 2018, 13(2), 89.
9 Zhao K, Liu X L, He Y H. IOP Conference Series:Materials Science and Engineering, 2017, 269, 1.
10 Wang M Y, Ji Z, Zhang Y F, et al. Powder Metallurgy Technology, 2017, 35(2), 142.
王梦雅, 纪箴, 张一帆, 等. 粉末冶金技术, 2017, 35(2), 142.
11 Zhao J Q, Liu J, Zhang Y D, et al. Powder Metallurgy Industry, 2015, 25(5), 47 (in Chinese).
赵剑青, 刘晶, 张银东, 等. 粉末冶金工业, 2015, 25(5), 47.
12 Liu C K, Zhang J Q, Chen H H, et al. Ordnance Material Science and Engineering, 2018, 41(3), 33 (in Chinese).
刘昌奎, 张佳庆, 陈贺贺, 等. 兵器材料科学与工程, 2018, 41(3), 33.
13 Dreshfield R L, Miner R V. Powder Metallurgy International, 1980, 12, 83.
14 Li Z, Li Z N, Liu X L, et al. Hot Working Technology, 2019, 45(20), 53 (in Chinese).
李振, 李志农, 刘新灵, 等. 热加工工艺, 2019, 45(20), 53.
15 Zhang Y, Zhang X, Zhang Y W, et al. Powder Metallurgy Industry, 2002, 12(5), 24 (in Chinese).
张莹, 张锡, 张义文, 等. 粉末冶金工业, 2002, 12(5), 24.
16 Ma W B, Liu G Q, Hu B F, et al. Acta Metallurgica Sinica, 2013, 49(10), 1248 (in Chinese).
马文斌, 刘国权, 胡本芙, 等. 金属学报, 2013, 49(10), 1248.
17 Gao Z J, Zhang G Q, Li Z, et al. Chinese Journal of Rare Metals, 2012, 36(4), 665 (in Chinese).
高正江, 张国庆, 李周, 等. 稀有金属, 2012, 36(4), 665.
18 Zhang Y W. Journal of Iron and Steel Research, 2002, 14(3), 73 (in Chinese).
张义文. 钢铁研究学报, 2002, 14(3), 73.
19 Han Z Y, Zeng G, Liang S J. Materials China, 2014, 33(12), 748 (in Chinese).
韩志宇, 曾光, 梁书锦. 中国材料进展, 2014, 33(12), 748.
20 Song J D, Han R T. Powder Metallurgy Industry, 1997, 7(2), 33 (in Chinese).
宋吉德, 韩仁田. 粉末冶金工业, 1997, 7(2), 33.
21 Xu T H, Zhao M Q, Di X B, et al. Materials Reports, 2005, 19(4), 128 (in Chinese).
许天旱, 赵麦群, 邸小波, 等. 材料导报, 2005, 19(4), 128.
22 Zhang M X, Wang C J, Chen Q M, et al. Heat Treatment of Metals, 2019, 44(12), 112 (in Chinese).
张梦醒, 王长军, 陈清明, 等. 金属热处理, 2019, 44(12), 112.
23 Li X, Zeng K L, He P J, et al. Materials Science and Engineering of Powder Metallurgy, 2019, 24(4), 374 (in Chinese).
李响, 曾克里, 何鹏江, 等. 粉末冶金材料科学与工程, 2019, 24(4), 374.
24 Li Q Q. Powder Metallurgy Industry, 1999, 9(5), 3 (in Chinese).
李清泉. 粉末冶金工业, 1999, 9(5), 3.
25 Peng H L. Microstructure and properties analysis of nickel-based superalloy powders prepared by gas atomization. Master's Thesis, South China University of Technology, China, 2016 (in Chinese).
彭翰林. 镍基高温合金粉末组织结构分析及性能研究. 硕士学位论文, 华南理工大学, 2016.
[1] 谢斌, 杨硕, 王伟宁, 郗雨林. ITO靶材第二相In4Sn3O12的结构及其对靶材性能的影响[J]. 材料导报, 2020, 34(Z1): 29-33.
[2] 甘杰, 何林, 李强, 杨晓峰, 范辉. 93W-5Ni-2Fe高密度钨合金冲击韧性关键影响因素研究[J]. 材料导报, 2020, 34(Z1): 304-306.
[3] 苏小虎, 栗卓新, 马思鸣, 李红, 张天理, KIM Hee Jin. 氧含量及夹杂物对高强钢金属芯焊丝E120C-K4熔敷金属冲击韧性的影响[J]. 材料导报, 2020, 34(11): 11049-11052.
[4] 陆亮亮, 刘雪峰, 张少明, 徐骏, 贺会军, 盛艳伟. 高频感应熔化金属丝气雾化制备球形钛粉[J]. 《材料导报》期刊社, 2018, 32(8): 1267-1270.
[5] 张昊, 胡强, 张少明, 盛艳伟, 赵新明, 贺会军. 水雾化法制备FeSiCr软磁合金粉末研究[J]. 材料导报, 2018, 32(20): 3590-3594.
[6] 兰宇, 李兵, 周子皓, 张以纯, 尹传强, 魏秀琴, 周浪. 表面氧含量对高纯硅粉高温氮化行为的影响[J]. 材料导报, 2018, 32(16): 2719-2722.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed