Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 21010049-11    https://doi.org/10.11896/cldb.21010049
  金属与金属基复合材料 |
热致变色过渡金属配合物的变色机理及应用
李良, 赵修贤, 王彬彬, 杨帅军*, 聂永, 蒋绪川*
济南大学智能材料与工程研究院,济南 250022
Color-changing Mechanisms and Applications of Thermochromic Transition Metal Complexes:a Review
LI Liang, ZHAO Xiuxian, WANG Binbin, YANG Shuaijun*, NIE Yong, JIANG Xuchuan*
Institute for Smart Materials & Engineering, University of Jinan, Jinan 250022, China
下载:  全 文 ( PDF ) ( 19906KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 社会的智能化是未来发展的必然趋势。智能材料作为智能化变革的基础,成为了近几年研究的热点。热致变色材料是一种智能变色材料,可以随着外界温度的改变发生颜色变化,被广泛应用于智能窗、温度传感、防伪、智能纺织、变色涂料等领域。热致变色材料的种类繁多,其中过渡金属配合物热致变色材料通常变色温度较低、变色现象明显并且拥有较独特的电子传递特性,具有良好的应用前景,受到了研究者的广泛关注。
在热致变色过渡金属配合物发展初期,科学家们主要研究的是配合物的结构和变色机理,关于配合物应用方面的研究很少,这主要是由于热致变色过渡金属配合物自身具有缺陷(如摩尔吸光系数低、变色需要溶剂等)。在最近十几年,科学家们通过各种方法手段增加热致变色过渡金属配合物的实用性,例如使用离子液、新型配体以及与其他功能材料复合等手段,使热致变色过渡金属配合物在各个领域的应用都取得了很大进展,但相关综述还较少。
只有掌握热致变色材料的变色机理,才能更好地设计符合不同应用场景的热致变色材料,本文首先对热致变色过渡金属配合物的变色机理进行介绍,常见变色机理包括构型变化、配体改变、自旋交叉,然后归纳总结了最近几年热致变色过渡金属配合物在温度传感器、智能窗等领域中应用的研究进展,最后对其相关领域未来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李良
赵修贤
王彬彬
杨帅军
聂永
蒋绪川
关键词:  智能材料  热致变色  过渡金属配合物  温度传感器    
Abstract: The development of smart technology is a ubiquitous trend in modern society. As they are the basis of this smart technology revolution, smart materials are the focus of much recent research. Thermochromic materials are smart materials that change their color in response to a change in external temperature. They are used in diverse applications such as smart windows, temperature sensing, anti-counterfeiting, smart textiles and color-changing paints, among many others. Several types of thermochromic materials exist. Thermochromic transition metal comp-lexes have several properties that make them attractive for application development. These include lower color-changing temperatures, distinct color changes and unique electron transfer characteristics.
The early work on thermochromic transition metal complexes focused on determining their structures and the thermochromic mechanisms. Application development was limited because of intrinsic shortcomings, such as low molar extinction coefficients and the need for solvents. In the last decade, the number of applications of thermochromic transition metal complexes has increased substantially. This is a result of advances in the use of ionic liquids, new ligands, and the integration of transition metal complexes into composites with other functional materials. Despite this progress, reviews of this area are rare.
To properly design smart thermochromic materials for specific applications, a deep understanding of the color-changing mechanism is needed. This article first describes the color-changing mechanisms of thermochromic transition metal complexes, primarily geometry changes, ligand changes and spin crossover. The article next summarizes recent progress on the applications of these complexes in temperature sensing, smart windows and other fields, and then concludes with comments on the direction of future research.
Key words:  smart materials    thermochromism    transition metal complexes    temperature sensors
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  O614  
  TB381  
基金资助: 国家自然科学基金青年项目(21805045);济南大学科技计划项目(XKY2067)
通讯作者:  * 杨帅军,济南大学讲师、硕士研究生导师。于四川大学获学士及博士学位,之后到中国香港中文大学从事博士后研究工作,现就职于济南大学智能材料与工程研究院。主要从事刺激响应型功能材料的开发与应用。作为第一或通信作者在Journal of the American Chemical Society、Angewandte Chemie International Edition等国际期刊上发表论文6篇。ism_yangsj@ujn.edu.cn
蒋绪川,济南大学教授、博士研究生导师,智能材料与工程研究院院长,国家“千人计划”学者。2001年博士毕业于中国科技大学。主要从事光、热、电、磁等外界刺激响应型无机功能材料的研究,作为第一或通信作者发表SCI论文及专著章节160余篇,被引次数超过8 000次。ism_jiangxc@ujn.edu.cn   
作者简介:  李良,2017年6月毕业于济南大学,获得理学学士学位。现为济南大学智能材料与工程研究院在读硕士研究生,在蒋绪川教授的指导下进行研究。目前主要研究领域为热刺激响应型功能材料。
引用本文:    
李良, 赵修贤, 王彬彬, 杨帅军, 聂永, 蒋绪川. 热致变色过渡金属配合物的变色机理及应用[J]. 材料导报, 2023, 37(4): 21010049-11.
LI Liang, ZHAO Xiuxian, WANG Binbin, YANG Shuaijun, NIE Yong, JIANG Xuchuan. Color-changing Mechanisms and Applications of Thermochromic Transition Metal Complexes:a Review. Materials Reports, 2023, 37(4): 21010049-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010049  或          http://www.mater-rep.com/CN/Y2023/V37/I4/21010049
1 Song X L, Li Z M, Chen J W, et al. Fine Chemicals, 2020, 37(3), 452(in Chinese).
宋晓丽, 李字明, 陈靖文, 等. 精细化工, 2020, 37(3), 452.
2 Granqvist C G. Thin Solid Films, 2016, 614, 90.
3 Jin X H, Sun J K, Xu X M, et al. Chemical Communications, 2010, 46(26), 4695.
4 Wan F, Qiu L X, Zhou L L, et al. Dalton Transactions, 2015, 44(42), 18320.
5 Wang B, Wang K, Wei C. ChemistrySelect, 2020, 5(10), 2989.
6 Chen K, Nenzel M M, Brown T M, et al. Inorganic Chemistry, 2015, 54(14), 6900.
7 Nicholas A D, Barnes F H, Adams D R, et al. Physical Chemistry Chemical Physics, 2020, 22(20), 11296.
8 Shigeta Y, Kobayashi A, Yoshida M, et al. Inorganic Chemistry, 2019, 58(11), 7385.
9 Shao J Y, Yao C J, Cui B B, et al. Chinese Chemical Letters, 2016, 27(8), 1105.
10 Banic N, Vranes M, Abramovic B, et al. Dalton Transactions, 2014, 43(41), 15515.
11 Osborne S J, Wellens S, Ward C, et al. Dalton Transactions, 2015, 44(25), 11286.
12 Zhang F, Guan P, Hu X L, et al. Materials Reports A:Reviw Papers, 2012, 26(5), 76 (in Chinese).
张凤, 管萍, 胡小玲, 等. 材料导报:综述篇, 2012, 26(5), 76.
13 Tian J, Peng H, Du X, et al. Journal of Alloys and Compounds, 2021, 858, 157725.
14 Mapazi O, Matabolap K, Moutloalir M, et al. Sensors and Actuators B: Chemical, 2017, 252, 671.
15 He Y, Li W, Han N, et al. Applied Energy, 2019, 247, 615.
16 Kingchok S, Nontasorn P, Laohhasurayotin K, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125733.
17 Yoon B, Lee J, Park I S, et al. Journal of Materials Chemistry C, 2013, 1(13), 2388.
18 Zhang Y, Hu Z, Xiang H, et al. Dyes and Pigments, 2019, 162, 705.
19 Sone K, Fukuda Y. Inorganic thermochromism, Springer Verlag, New York, 1987.
20 Linert W, Fukuda Y, Camard A. Coordination Chemistry Reviews, 2001, 218, 113.
21 Day J H. Chemical Reviews, 1968, 68(6), 649.
22 Zhang Y Y, Shao X J. Journal of Higher Correspondence Education, 1994, 1, 13(in Chinese).
张炎有, 邵学俊. 高等函授学报, 1994, 1, 13.
23 Li B, Fan H T, Zang S Q, et al. Coordination Chemistry Reviews, 2018, 377, 307.
24 Li R, Xu F F, Gong Z L, et al. Inorganic Chemistry Frontiers, 2020, 7(18), 3258.
25 Billeci F, Gunaratne H Q N, Licence P, et al. ACS Sustainable Chemistry & Engineering, 2021, 9(11), 4064.
26 Bhattacharya R, Ghosh A. Journal of Chemical Research, 2001, 2001(8), 332.
27 Ferraro J R, Sherren A T. Inorganic Chemistry, 1978, 17(9), 2498.
28 Abe Y, Wada G. Bulletin of the Chemical Society of Japan, 1980, 53(12), 3547.
29 Pfeiffer P V, Glaser H. Journal für Praktische Chemie, 1938, 151, 134.
30 Grenthe I, Paoletti P, Sandström M, et al. Inorganic Chemistry, 1979, 18, 2687.
31 Cui A L, Chen X, Sun L, et al. Journal of Chemical Education, 2011, 88(3), 311.
32 Hayami S, Urakami D, Sato S, et al. Chemistry Letters, 2009, 38(5), 490.
33 Hoshino N, Fukuda Y, Sone K, et al. Bulletin of the Chemical Society of Japan, 1989, 62(6), 1822.
34 Paul A, Upadhyay K K, Backović G, et al. Inorganic Chemistry, 2020, 59(22), 16301.
35 Willett R D, Haugen J A, Lebsack J, et al. Inorganic Chemistry, 1974, 13, 2510.
36 Xie D, Xu J, Cheng H, et al. Journal of Molecular Structure, 2018, 1161, 267.
37 Harlow R L, Wells W J, Watt G W, et al. Inorganic Chemistry, 1974, 13(9), 2106.
38 Kelley A, Nally S, Bond M R. Acta Crystallographica Section B, 2015, 71(1), 48.
39 Shirvan A, Golchoubian H, Siegler M A. Journal of Molecular Structure, 2021, 1243, 130930.
40 Supriya S, Das S K. Inorganic Chemistry Communications, 2009, 12(5), 364.
41 Grenthe I, Nordin E. Inorganic Chemistry, 1979, 18(4), 1109.
42 Hasani N, Eslami A. Polyhedron, 2015, 85, 412.
43 Treichel P M, Rosenhein L D. Inorganic Chemistry, 1984, 23(24), 4018.
44 Chamberlain C S, Dargo R S. Inorganica Chimica Acta, 1979, 32, 75.
45 Kuroiwa K, Shibata T, Takadaa, et al. Journal of the American Chemical Society, 2004, 126(7), 2016.
46 Olguin J, Brooker S. Coordination Chemistry Reviews, 2011, 255(1-2), 203.
47 Zhu D R, Qi L, Cheng H M. Progress in Chemistry, 2009, 21(6), 1187 (in Chinese).
朱敦如, 齐丽, 程慧敏, 等. 化学进展, 2009, 21(6), 1187.
48 Lapresta-Fernandez A, Titos-padilla S, Herreraj M, et al. Chemical Communications, 2013, 49(3), 288.
49 Piedrahita-Bello M, Ridier K, Mikolasek M, et al. Chemical Communications, 2019, 55, 4769.
50 Tezgerevska T, Alley K G, Boskovic C. Coordination Chemistry Reviews, 2014, 268, 23.
51 Gransbury G K, Boulon M E, Petrie S, et al. Inorganic Chemistry, 2019, 58(7), 4230.
52 Pitchaimani J, Karthikeyan S, Lakshminarasimhan N, et al. ACS Omega, 2019, 4, 13756.
53 Wang L, Wei Z, Rao W, et al. Inorganic Chemistry Communications, 2021, 130, 108702.
54 Ke S, Li M, Rao W, et al. New Journal of Chemistry, 2020, 44(48), 21288.
55 Childs P R N, Greenwood J R, Long C A. Review of Scientific Instruments, 2000, 71(8), 2959.
56 Funasako Y, Mochida T. Chemical Communications, 2013, 49(41), 4688.
57 Wei X, Yu L, Wang D, et al. Green Chemistry, 2008, 10(3), 296.
58 Wei X, Yu L, Jin X, et al. Advanced Materials, 2009, 21(7), 776.
59 Fernandes L C, Correiad M, Garcia-astrain C, et al. ACS Applied Materials & Interfaces, 2019, 11(22), 20316.
60 Kahani S A, Abdevali F. RSC Advances, 2016, 6(6), 5116.
61 Nirmala A, Mukkatt I, Shankar S, et al. Angewandte Chemie International Edition, 2021, 60(1), 455.
62 Wang Z, Hou X, Duan N, et al. ACS Applied Materials & Interfaces, 2021, 13(24), 28878.
63 Aklujkar P S, Kandasubramanian B. Journal of Coatings Technology and Research, 2021, 18(1), 19.
64 Marinković M, Nikolić R, Savović J, et al. Solar Energy Materials and Solar Cells, 1998, 51(3), 401.
65 Gadžuri S, Vraneš M, Dožić S. Solar Energy Materials and Solar Cells, 2012, 105, 309.
66 Sun R, Yao L, He J H. Progress in Chemistry, 2019, 31(12), 1712 (in Chinese).
孙蕊, 姚琳, 贺军辉, 等. 化学进展, 2019, 31(12), 1712.
67 Xie Z Z, Li Z H, Lu H, et al. Materials Reports, 2022, 36(8), 20080150 (in Chinese).
谢忠洲, 李钟昊, 逯浩, 等. 材料导报, 2022, 36(8), 20080150.
68 Zhu J, Huang A, Ma H, et al. RSC Advances, 2016, 6(71), 67396.
69 Zhu J, Huang A, Ma H, et al. New Journal of Chemistry, 2017, 41(2), 830.
70 Zhu J, Huang A, Ma H, et al. ACS Appl Mater Interfaces, 2016, 8(43), 29742.
71 Chen Y, Zhu J, Ma H, et al. Solar Energy Materials and Solar Cells, 2019, 196, 124.
72 Byker H J, Ogburn P H, Griend D A V, et al. us patent, US7542196B2, 2009.
73 Molina-gonzález J, Arellano-morales A, Meza O, et al. Journal of Alloys and Compounds, 2021, 850, 156709.
74 Chowdhury M A, Joshi M, Butola B S. Journal of Engineered Fibers and Fabrics, 2014, 9(1), 155892501400900113.
75 Ramlow H, Andrade K L, Immich A P S. The Journal of The Textile Institute, 2021, 112, 152.
[1] 陈露, 朱琦, 孙旭东. 基于稀土层状氢氧化物的荧光材料研究进展[J]. 材料导报, 2023, 37(3): 22090241-10.
[2] 赵明媚, 张进秋, 彭志召, 张建, 李欣. 剪切增稠液体理论基础和工程应用进展概述[J]. 材料导报, 2022, 36(9): 20070135-8.
[3] 谢忠洲, 李钟昊, 逯浩, 王莹, 刘永生. 纳米复合结构对VO2相变特性的影响[J]. 材料导报, 2022, 36(8): 20080150-10.
[4] 潘一, 徐明磊, 郭奇, 廖广志, 杨双春, Kantoma Daniel Bala. 钻井液智能堵漏材料研究进展[J]. 材料导报, 2021, 35(9): 9223-9230.
[5] 杨广鑫, 潘家保, 周陆俊, 高洪, 王晓雷. 磁流变脂材料及其应用研究进展[J]. 材料导报, 2021, 35(23): 23183-23191.
[6] 张雨萌, 李洁, 夏进军, 张育新. 4D打印技术:工艺、材料及应用[J]. 材料导报, 2021, 35(1): 1212-1223.
[7] 刘德乡, 刘武, 叶志会, 吴志平. 生物质基温敏智能材料的研究进展[J]. 材料导报, 2019, 33(19): 3336-3346.
[8] 杨芳, 张龙, 余堃, 齐天骄, 官德斌. 石墨烯湿敏性能研究进展[J]. 材料导报, 2018, 32(17): 2940-2948.
[9] 袁飞洋, 万强, 张灿阳, 李旭. 磁流变弹性体力磁耦合本构关系的研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 1-12.
[10] 王延杰, 汝杰, 赵东旭, 王田苗, 沈奇, 陈花玲, 朱灯林. 离子聚合物-金属复合材料(IPMC)的电极界面研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 24-29.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed