Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 21010051-10    https://doi.org/10.11896/cldb.21010051
  无机非金属及其复合材料 |
混凝土环形收缩试验的研究进展
张超1, 方胜1, 黄伟1,2,*, 赖志超1, 陈添平3
1 福州大学土木工程学院,福州 350108
2 垒知控股集团股份有限公司,福建 厦门 361004
3 福建福平铁路有限责任公司,福州 350000
Ring Shrinkage Test of Concrete:a Review
ZHANG Chao1, FANG Sheng1, HUANG Wei1,2,*, LAI Zhichao1, CHEN Tianping3
1 College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
2 Lets Holding Group Co., Ltd., Xiamen 361004,Fujian, China
3 Fujian Fuping Railway Co., Ltd., Fuzhou 350000, China
下载:  全 文 ( PDF ) ( 11301KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 实际工程中,由于混凝土自身和外界作用,体积会发生变化,材料产生收缩。自从混凝土的收缩性能研究进入人们的视野以来,就不断有新的研究方法被提出。根据约束作用,混凝土收缩一般分为自由收缩和约束收缩。其中,环形约束收缩试验因其装置简单、易操作、应力大小均匀、易于推广及标准化、体现约束条件下收缩和应力松弛的综合作用等优点,被广泛应用于收缩试验,能有效评价混凝土的抗开裂性能。
然而,环形约束收缩试验有着开裂位置随机、对高抗裂性材料约束不足、开裂时间较长或不开裂等问题。对此,许多学者针对诱导裂缝位置与加大开裂敏感度的方面提出使用不同的改进装置。另外,试验的影响因素与开裂指标也是关系到环形约束收缩试验方法科学实用与否的重要因素。
在方法改进方面,国内外学者提出了内置尖角法、内外环偏心法、椭圆环法等新的实用方法;在试验影响因素方面,众多学者认为约束度、湿度、纤维等举足轻重;在开裂指标方面,现阶段主要有基于抗拉强度、断裂力学、开裂系数、应力率系数等实用的开裂指标可供参考。
本文从试验装置、影响因素、开裂指标等方面总结了混凝土环形约束收缩试验的研究进展,分析了混凝土环形约束收缩试验的影响因素,以期为此类试验方法的改进与应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张超
方胜
黄伟
赖志超
陈添平
关键词:  环形约束收缩试验  试验装置  约束度  湿度  开裂指标    
Abstract: In the current engineering practice, the volume of concrete is usually changed causing the formation of shrinkage due to the internal and external actions.Since recent research focusing on the shrinkage properties of concrete emerged, new research methods have continuously been proposed. The shrinkage of concrete is generally divided into free and confined shrinkage according to the limitation actions. One of the recent adopted testing methods is the ring confined shrinkage test that is widely used in testing the shrinkage of concrete. The wide usage of this method is due to its advantages that include the simple devices, easy operation, uniform stress, and easy popularization and standardization. It can also reflect the comprehensive effects of shrinkage and stress relaxation under constraint conditions. Therefore, it has the ability to effectively examine the cracking resistance of concrete.
However, this testing method has some drawbacks such as the random cracking position, insufficient restraint on materials with high cracking, and long cracking time or no cracking. Thus, many scholars have suggested different improved devices that can induce cracks position and increase the cracking sensitivity. Besides, the influencing factors and cracking indicators of this testing method are also important for the scientific and practical application.
For methods improvement, many studies conducted recently either locally or abroad have proposed new practical methods such as built-in sharp angle, inner and outer rings eccentricity, and elliptical rings. Several factors such as the constraint degree, humidity, fiber, etc., have an important influence on this testing method, while there are some practical cracking indexes based on tensile strength, fracturing mechanics, cracking coefficient, stress rate coefficient, etc., for the cracking indicators.
This review summarizes the available research on the progress of concrete ring confined shrinkage test, from a detailed and comprehensive perspective of the experimental devices, influential factors and cracking indicators. Still, it provides analysis on the influencing factors of this testing method in order to serve as a reference for the future researchers when dealing with this method of testing.
Key words:  ring confined shrinkage test    test device    restraint degree    humidity    cracking indicator
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  TU528  
基金资助: 国家自然科学基金 (E51508102);福建省自然科学基金 (2019J01233);中国博士后科学基金(2020M671951);福州大学贵重仪器设备开放测试基金(2020T035); 高性能土木工程材料国家重点实验室开放基金(2019CEM003);江苏省土木工程材料重点实验室开放基金(CM2018-04);长江科学院开放基金(CKWV2019750/KY)
通讯作者:  * 黄伟,福州大学土木工程学院助理研究员、硕士研究生导师。2010年7月本科毕业于重庆大学材料科学与工程学院,2017年7月于东南大学材料科学与工程专业在东南大学孙伟院士与Karen Scrivener教授联合培养下取得博士学位。主要从事超高性能/超高延性水泥基复合材料、水泥水化及微结构演变、固体废弃物综合利用、混凝土海洋环境耐久性、高性能混凝土外加剂等相关研究工作。已在Cement and Concrete Composites、Construction and Building Materials、Materials & Design等国际重要刊物发表多篇SCI等论文。WeiHuang@fzu.edu.cn   
作者简介:  张超,福州大学土木工程学院研究员、博士研究生导师。2011年6月毕业于福州大学桥梁与隧道工程专业。2011—2012年至中国台湾地震工程研究中心访问;2015—2017年至澳大利亚科庭大学从事博士后研究;2018—2021年在北京工业大学从事博士后研究。主要从事ECC混凝土材料力学性能及在结构抗震设计中应用的相关研究工作。已在Engineering StructuresMarine StructuresOcean Engineering、《土木工程学报》等国内外行业顶级期刊发表多篇论文。
引用本文:    
张超, 方胜, 黄伟, 赖志超, 陈添平. 混凝土环形收缩试验的研究进展[J]. 材料导报, 2023, 37(4): 21010051-10.
ZHANG Chao, FANG Sheng, HUANG Wei, LAI Zhichao, CHEN Tianping. Ring Shrinkage Test of Concrete:a Review. Materials Reports, 2023, 37(4): 21010051-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010051  或          http://www.mater-rep.com/CN/Y2023/V37/I4/21010051
1 Han Y D, Zhang J, Yue Q R, et al. Concrete, 2019(2), 1(in Chinese).
韩宇栋, 张君, 岳清瑞, 等. 混凝土, 2019(2), 1.
2 Zhang X, Gou X. Concrete, 2013(2), 41 (in Chinese).
张鑫, 荀绚. 混凝土, 2013(2), 41.
3 Zhuang H X, Feng X Z, Wei H, et al. China Concrete and Cement Pro-ducts, 2018(4), 81 (in Chinese).
庄华夏, 冯小忠, 韦华, 等. 混凝土与水泥制品, 2018(4), 81.
4 Tian Q, Sun W, Miu C W, et al. Journal of Building Materials, 2005, 8(1), 82 (in Chinese).
田倩, 孙伟, 缪昌文, 等. 建筑材料学报, 2005, 8(1), 82.
5 Hossain A B, Weiss J. Cement and Concrete Research, 2006, 36(1), 189.
6 Hou J P, Shi W, Yuan Y. Bulletin of the Chinese Ceramic Society, 2016, 35(1), 292 (in Chinese).
侯景鹏, 史巍, 袁勇. 硅酸盐通报, 2016, 35(1), 292.
7 Ma L N, Gong J X, Zhao Y H. Journal of Architecture and Civil Engineering, 2017, 34(6), 85 (in Chinese).
马丽娜, 贡金鑫, 赵艳华. 建筑科学与工程学报, 2017, 34(6), 85.
8 Gao X J, He Z M, Yang Y Z, et al. Journal of the Chinese Ceramic Society, 2004, 32(3), 334 (in Chinese).
高小建, 何忠茂, 杨英姿, 等. 硅酸盐学报, 2004, 32(3), 334.
9 Shi C J, Tong B H, He F Q. Concrete, 2011(6), 5 (in Chinese).
史才军, 童柏辉, 何富强. 混凝土, 2011(6), 5.
10 Carlson R W. Cracking of Concrete, 1942, 29(2), 98.
11 Carlson R W, Reading T J. ACI Structural Journal, 1988, 85(4), 395.
12 McDonald D B, Krauss P D, Rogalla E A. Concrete International, 1995, 17(5), 49.
13 Grzybowski M, Shah S P. ACI Materials Journal, 1990, 87(2), 395.
14 AASHTO. In:Standard practice for estimating the cracking tendency of concrete, AASHTO, US, 1999, pp.34.
15 ASTM C 1581-04. Standard test method for determining age at cracking and induced tensile stress characteristic of mortar and concrete under restrained shrinkage, ASTM International, US, 2004.
16 Hossain A B, Weiss J. Cement and Concrete Composites, 2004, 26(5), 531.
17 Moon J H, Weiss J. Cement and Concrete Composites, 2006, 28(5), 486.
18 Van Breugel K, Lokhorst S J. Materials and Structures, 2001, 12, 229.
19 Zhou Y B. Research on anti-cracking performance of roller compacted rubber concrete. Master's Thesis, Tianjin University, China, 2009 (in Chinese).
周艳兵. 碾压橡胶混凝土抗裂性能研究. 硕士学位论文, 天津大学, 2009.
20 Toledo Filho R D, Ghavami K, Sanjuán M A, et al. Cement and Concrete Composites, 2005, 27(5), 537.
21 Briffaut M, Benboudjema F, Torrenti J M, et al. Cement and Concrete Research, 2011, 41(1), 56.
22 Xie Z. The performance of CRC in antiflex cracking and the technique for ring method's improvement. Master's Thesis, Tianjin University, China, 2008 (in Chinese).
谢震. 橡胶集料混凝土抗折性能及圆环实验改进方法的研究. 硕士学位论文, 天津大学, 2008.
23 Luo B. Research on cracking resistance and bending toughness of crumb rubber concrete. Master's Thesis, Tianjin University, China, 2009 (in Chinese).
骆斌. 橡胶集料混凝土抗裂性能及弯曲韧性研究. 硕士学位论文, 天津大学, 2009.
24 Li H R. Research on cementitious materials restrained shrinkage test methods. Master's Thesis, Tianjin University, China, 2015 (in Chinese).
李浩然. 水泥基材料约束收缩试验方法研究. 硕士学位论文, 天津大学, 2015.
25 Shao J W, Zhu H, Li J J, et al. Bulletin of the Chinese Ceramic Society, 2017, 36(3), 899 (in Chinese).
邵建文, 朱涵, 李建举, 等. 硅酸盐通报, 2017, 36(3), 899.
26 Cao L X, Guo J H, Zhang L, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(10), 3078(in Chinese).
曹立学, 郭君华, 张磊, 等. 硅酸盐通报, 2020, 39(10), 3078.
27 He Z, Zhou X, Li Z. Materials Journal, 2004, 101(1), 50.
28 Dong W, Luo H, Wang F L, et al. Journal of Building Materials, 2017, 20(2), 271 (in Chinese).
董伟, 罗昊, 王福禄, 等. 建筑材料学报, 2017, 20(2), 271.
29 Moon J H, Rajabipour F, Pease B, et al. Journal of ASTM International, 2006, 3(8), 1.
30 Bazant Z P, Wittmann F H. Creep and shrinkage in concrete structures, John Wiley & Sons, UK, 1982.
31 Hossain A, Pease B, Weiss J. Concrete Materials and Construction, 2003, 1834, 24.
32 Hu H. Cracking mechanism research of early-age high performance cement-based materials based on experiment. Master's Thesis, Chongqing University, China, 2015 (in Chinese).
胡辉. 早龄期高性能水泥基材料开裂机制试验研究. 硕士学位论文, 重庆大学, 2015.
33 Dong W, Zhou X M, Wu Z M, et al. Computers & Structures, 2018, 207, 111.
34 Gao Y, Zhang J, Han Y D. Journal of Building Materials, 2012, 15(5), 618 (in Chinese).
高原, 张君, 韩宇栋. 建筑材料学报. 2012, 15(5), 618.
35 Kanavaris F, Azenha M, Soutsos M, et al. Cement and Concrete Composites, 2019, 95, 137.
36 Yoo D, Park J, Kim S, et al. Materials & Structures, 2014, 47(7), 1161.
37 Weiss J. Prediction of early-age shrinkage cracking in concrete elements. Ph. D. Thesis, Evanston: Northwestern University, US, 1999.
38 Hu B, Liu J P, Liu J Z. Concrete, 2011(3), 133(in Chinese).
胡兵, 刘加平, 刘建忠. 混凝土, 2011(3), 133.
39 Weiss W J, Shah S P. Materials and Structures, 2002, 35, 85.
40 Dong W, Yuan W, Zhou X, et al. Engineering Fracture Mechanics, 2018, 189, 148.
41 Carlson R W. ACI Journal Proceedings, 1937, 33(1), 327.
42 Bazant Z P, Najjar L J. Cement and Concrete Research, 1971, 1(5), 461.
43 Hou D W. Integrative studies on autogenous and drying shrinkage of concrete and related issues. Ph. D. Thesis, Tsinghua University, China, 2010 (in Chinese).
侯东伟. 混凝土自身与干燥收缩一体化及相关问题研究. 博士学位论文, 清华大学, 2010.
44 Zhang P, Zhao T J, Wittmann F H, et al. Journal of Hydraulic Engineering, 2010, 41(1), 55 (in Chinese).
张鹏, 赵铁军, Wittmann F H, 等. 水利学报, 2010, 41(1), 55.
45 Huang Y, Qi K, Zhang J. Journal Publishing Center of Tsinghua University Press, 2007, 47(3), 309 (in Chinese).
黄瑜, 祁锟, 张君. 清华大学学报(自然科学版), 2007, 47(3), 309.
46 Han Y D. Studies and controls on shrinkage of modern concrete. Ph. D. Thesis, Tsinghua University, China, 2014 (in Chinese).
韩宇栋. 现代混凝土收缩调控研究. 博士学位论文, 清华大学, 2014.
47 Zhang J, Qi K, Huang Y. Journal of Engineering Mechanics, 2009, 135(8), 871.
48 Zhang J, Huang Y, Qi K, et al. Journal of Materials in Civil Engineering, 2012, 124(6), 615.
49 Zhang J, Yuan G, Han Y D. International Journal of Damage Mechanics, 2017, 26(5), 771.
50 Li V C, Fischer G, Kim Y, et al. Durable link slabs for jointless bridge decks based on strain-hardening cementitious composites. University of Michigan Press, USA, 2003.
51 Wang J Y, Bian C, Xiao R C, et al. Materials Reports A: Review Papers, 2017, 31(12), 52 (in Chinese).
王俊颜, 边晨, 肖汝诚, 等. 材料导报:综述篇, 2017, 31(12), 52.
52 Wang J Y, Bian C, Xiao R C, et al. China Journal of Highway and Transport, 2019, 32(9), 115 (in Chinese).
王俊颜, 边晨, 肖汝诚, 等. 中国公路学报, 2019, 32(9), 115.
53 Li C, Chen B C, Huang Q W. Engineering Mechanics, 2019, 36(8), 49 (in Chinese).
李聪, 陈宝春, 黄卿维. 工程力学, 2019, 36(8), 49.
54 Shi T, Li Z X, Li S S. Acta Materiae Compositae Sinica, 2019, 36(6), 1528 (in Chinese).
施韬, 李泽鑫, 李闪闪. 复合材料学报, 2019, 36(6), 1528.
55 Weng M, Wang Y, Wang D W. Journal of China & Foreign Highway, 2019, 39(3), 217 (in Chinese).
翁梅, 王焱, 王东炜. 中外公路, 2019, 39(3), 217.
56 Choi H, Lim M, Kitagaki R, et al. Constr Build Mater, 2015, 84, 468.
57 Yang W J, Wang P, Wang Y. Concrete, 2008(8), 85 (in Chinese).
杨伟军, 王鹏, 王艳. 混凝土, 2008(8), 85.
58 Zhang D X, Wei Y, Zhou J. Bulletin of the Chinese Ceramic Society, 2019, 38(5), 1462 (in Chinese).
张登祥, 韦莹, 周佳. 硅酸盐通报, 2019, 38(5), 1462.
59 Xia Q, Li H, Lu A Q, et al. Journal of the Chinese Ceramic Society, 2016, 44(11), 1602 (in Chinese).
夏强, 李华, 陆安群, 等. 硅酸盐学报, 2016, 44(11), 1602.
60 Ma X W, Li X Y, Zhu W Z, et al. Journal of Building Materials, 2006(5), 598 (in Chinese).
马新伟, 李学英, 朱卫中, 等. 建筑材料学报, 2006(5), 598.
61 Li C, Huang W, Chen B C. Journal of Fuzhou University (Natural Science Edition), 2019, 47(2), 251 (in Chinese).
李聪, 黄伟, 陈宝春. 福州大学学报(自然科学版), 2019, 47(2), 251.
62 Passuello A, Moriconi G, Shan S P. Cement and Concrete Composites, 2009, 31(10), 699.
63 Turcry P, Loukili A, Haidar K, et al. Journal of Materials in Civil Engineering, 2006, 18(1), 46.
64 Ouyang C, Shah S P. Journal of the American Ceramic Society, 1991, 74(11), 2831.
65 Dong W. Experimental investigation on initial cracking criterion and numerical simulation of crack propagation forⅠ-Ⅱ mixed mode in concrete. Ph. D. Thesis, Dalian University of Technology, China, 2008 (in Chinese).
董伟. 混凝土Ⅰ-Ⅱ复合型裂缝起裂准则的试验研究与裂缝扩展过程的数值模拟. 博士学位论文, 大连理工大学, 2008.
66 Wang G J, Liu J D, Zheng J L. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(1), 82(in Chinese).
王国杰, 刘积丁, 郑建岚. 防灾减灾工程学报, 2019, 39(1), 82.
67 Shah H R, Weiss J. Materials and Structures, 2006, 39(9), 887.
68 Wang G J, Zheng J L. In: International Symposium on Design. Fuzhou, China, 2014, pp. 260.
69 Wang G J, Zheng J L. Journal of Fuzhou University (Natural Science Edition), 2014, 42(3), 452(in Chinese).
王国杰, 郑建岚. 福州大学学报(自然科学版), 2014, 42(3), 452.
70 Wang G J. Engineering Mechanics, 2014, 31(12), 173(in Chinese).
王国杰. 工程力学, 2014, 31(12), 173.
71 Swenty M K, Graybeal B A. Material characterization of field cast connection grouts, Federal Highway Administration (FHWA), America, 2013.
72 Li Y X. Structural Engineers, 2020, 36(1), 136(in Chinese).
李逸翔. 结构工程师, 2020, 36(1), 136.
[1] 罗蓉, 王伟, 罗晶, 习磊. 多尺度评价相对湿度对沥青-集料黏附性的影响[J]. 材料导报, 2023, 37(2): 21060216-6.
[2] 吴江松, 谭彦妮, 刘晏军. 羟基磷灰石在传感领域应用的研究进展[J]. 材料导报, 2022, 36(20): 20090296-13.
[3] 王延杰, 赵世界, 盛俊杰, 汝杰, 赵春, 李树勇. MWCNT/Nafion/MWCNT复合材料的湿度传感性能研究[J]. 材料导报, 2022, 36(20): 21060183-9.
[4] 杨医博, 岳晓东, 姚丁语, 张迪, 郭文瑛, 王恒昌. 碱渣内养护剂对高强高性能混凝土自收缩及早期抗裂性能的影响及机理分析[J]. 材料导报, 2022, 36(12): 20020019-6.
[5] 沈燕, 朱航宇, 王培芳, 陈玺, 钱觉时. 不同养护条件下硫硅酸钙-硫铝酸钙水泥的性能研究[J]. 材料导报, 2022, 36(12): 21040035-6.
[6] 邵亚丽, 王喜明. 木材形状记忆效应与机理的研究进展[J]. 材料导报, 2021, 35(7): 7190-7198.
[7] 李爽, 刘和鑫, 杨永, 李青, 张之璐, 朱效宏, 杨长辉, 杨凯. 碱激发矿渣/偏高岭土复合胶凝材料干燥收缩机理研究[J]. 材料导报, 2021, 35(4): 4088-4091.
[8] 于泳, 金祖权, 邵爽爽, 李哲. 蒸养过程中水泥基材料抗拉性能试验研究[J]. 材料导报, 2021, 35(14): 14052-14057.
[9] 赵立晓, 王鹏刚, 王兰芹, 赵铁军, 光文涛. 混凝土内部温湿度响应参数分析:水分扩散系数与导热系数[J]. 材料导报, 2021, 35(12): 12075-12080.
[10] 胡明玉, 周侠, 李晔, 谭煜秋. TiO2/硅藻土/泥炭藓复合光催化调湿材料研究[J]. 材料导报, 2021, 35(10): 10036-10041.
[11] 杨荣周, 徐颖, 陈佩圆. 养护湿度对橡胶水泥砂浆动态压缩破坏特征及能量耗散的影响[J]. 材料导报, 2020, 34(14): 14070-14078.
[12] 孙道胜, 王辉, 刘开伟, 王爱国, 李萍, 张高展, 管艳梅. 低湿度半浸泡环境下粉煤灰对砂浆试件硫酸盐侵蚀性能的影响[J]. 材料导报, 2020, 34(14): 14079-14086.
[13] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[14] 常洪雷, 金祖权, 刘健. 自干燥及水分扩散引起的高性能混凝土内部湿度演变[J]. 材料导报, 2019, 33(14): 2370-2375.
[15] 杨芳, 张龙, 余堃, 齐天骄, 官德斌. 石墨烯湿敏性能研究进展[J]. 材料导报, 2018, 32(17): 2940-2948.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed