Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 21060183-9    https://doi.org/10.11896/cldb.21060183
  高分子与聚合物基复合材料 |
MWCNT/Nafion/MWCNT复合材料的湿度传感性能研究
王延杰1, 赵世界1,2, 盛俊杰3,*, 汝杰2, 赵春1,2, 李树勇3
1 河海大学机电工程学院,江苏 常州 213022
2 江苏省特种机器人技术重点实验室,江苏 常州 213022
3 中国工程物理研究院,四川 绵阳 621900
Humidity Sensing Performance of MWCNT/Nafion/MWCNT Composites
WANG Yanjie1, ZHAO Shijie1,2, SHENG Junjie3,*, RU Jie2, ZHAO Chun1,2, LI Shuyong3
1 College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, Jiangsu, China
2 Jiangsu Key Laboratory of Special Robotics Technology, Changzhou 213022,Jiangsu, China
3 China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
下载:  全 文 ( PDF ) ( 4645KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了满足工农业湿度检测的需求,开发新型湿度传感器至关重要。作为湿度传感器的关键部件,湿敏材料的选择直接影响着传感器的使用性能。离子聚合物-金属复合材料(Ionic polymer-metal-composite, IPMC)可制成一种新型柔性传感器,在外界动态湿度作用下,离子聚合物内部的可移动离子将产生定向迁移,形成电势差,从而产生电信号。由于其出色的湿敏特性,IPMC传感器在环境湿度精密监测领域引起了越来越多的关注。但现有离子聚合物复合材料的电极层过于致密,导致复合材料芯层难以与外界环境迅速进行湿度交换;另外,电极层和芯层之间弱的粘附力,导致电极容易脱落。为了解决电极层过于致密的问题,本研究选用多壁碳纳米管(MWCNT)、聚偏氟乙烯(PVDF-HFP)和离子液体(ILs)浇铸具有微孔结构的复合电极层,以提高复合材料芯层与外界环境的湿度交换能力;同时在热压成型过程中,具有离子传输能力的粘结剂被使用在电极层和电解质芯层之间,以增强电极和芯层之间的结合强度。
本工作采用溶液铸膜法制备了多壁碳纳米管/聚偏氟乙烯/离子液体(MWCNT/PVDF-HFP/ILs)电极层和全氟磺酸-聚四氟乙烯/离子液体(Nafion/ILs)电解质层,并经叠层热压获得了具有湿敏特性的MWCNT/Nafion/MWCNT复合膜,借助扫描电子显微镜(SEM)、循环伏安曲线(CV)以及电化学阻抗(EIS)等手段表征了复合膜的微观形貌和电化学特性,进一步研究了该复合膜在不同湿度环境下的湿度-电压响应特性、湿敏性能及湿敏机理。研究结果表明:当相对湿度介于0%RH~100%RH时,该湿度传感膜的最快响应时间和恢复时间分别为17 s 和58 s,电响应的灵敏度为0.14 mV/%RH,响应速率高达0.277 mV/s。最后,本研究对湿度传感膜在呼吸监测、大坝渗水监测等场合的潜在应用进行了探讨。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王延杰
赵世界
盛俊杰
汝杰
赵春
李树勇
关键词:  湿度传感  多壁碳纳米管  全氟磺酸树脂(Nafion)  离子液体    
Abstract: The development of new humidity sensors is of great importance to meet the industrial and agricultural humidity detection. As a key component of a humidity sensor, the humidity-sensitive material directly affects the performance of the sensor.Ionic polymer-metal-composite (IPMC) can be used as a new type of flexible sensor. The movable ions inside the ionomer will undergo directional migration to form a potential difference under the action of external dynamic humidity, thereby generating an electrical signal. Because of excellent humidity-sensing properties, IPMC sensors have attracted increasing attention in the field of precision monitoring of ambient humidity. However, the electrode layer of the existing IPMC sensors is dense, which makes it difficult for quickly exchange humidity with the external environment. In addition, the weak adhesion between the electrode layer and the ionomer membrane causes the electrode to fall off easily. In order to solve the problem that the electrode layer is too dense, multi-walled carbon nanotubes (MWCNT), polyvinylidene fluoride (PVDF-HFP) and ionic liquids (ILs) have been used to cast the composite electrode layer with microporous structure for quickly exchange humidity with the external environment. Meanwhile, a binder with ion transport ability has been used between the electrode layer and ionomer membrane to enhance the bonding strength of the electrode during the thermoforming process.
This work developed a new kind of ionic polymer (MWCNT/Nafion/MWCNT) composite for humidity sensitive film. Firstly, the multiwalled carbon nanotubes/polyvinylidene fluoride/ionic liquid (MWCNT/PVDF-HFP/ILs) electrode layer and perfluorinated sulfonic acid-polytetrafluoroethy-lene/ionic liquid (Nafion/ILs) electrolyte layer were prepared via solution casting method. The MWCNT/Nafion/MWCNT composite film with humidity sensitive properties was assembled by hot-pressing a Nafion/ILs electrolyte layer between two MWCNT/PVDF-HFP/ILs electrode films. Subsequently, the microstructure and electrochemical characteristics of the composite film were characterized by using scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance (EIS), respectively. And the humidity-voltage responses, the humidity sensitivity characteristics and mechanism of the composite film under various humidity conditions were tested systematically. The results show that as the relative humidity ranges from 0%RH and 100%RH, the fastest response time and fastest recovery time of the humidity sensing film are 17 s and 58 s, respectively. The sensitivity of electrical response is 0.14 mV/%RH, and the response rate is up to 0.277 mV/s. Finally, the potential applications of the humidity sensing film in respiration detection, dam seepage detection and other scenarios were investigated and demonstrated.
Key words:  humidity sensing    multiwalled carbon nanotubes    Nafion    ionic liquid
发布日期:  2022-10-26
ZTFLH:  TB332  
基金资助: 国家重点研发计划“智能机器人”重点专项(2020YFB1312900);国家自然科学基金(51975184);中央高校业务费项目(B210202124;B200202179);国家博士后自然科学基金(2019M661706);江苏省研究生科研与实践创新计划项目(KYCX21_0466)
通讯作者:  *scu2005sjj@163.com   
作者简介:  王延杰,青年教授/博士研究生导师, 现任机电工程学院副院长。2015年获得西安交通大学机械工程专业工学博士学位,先后在西安交通大学、美国内华达大学拉斯维加斯分校、日本产业综合技术研究所(AIST kansai)、斯旺西大学从事学术研究与交流工作。研究方向涉及智能材料与结构、先进仿生系统与机器人技术、微驱动/传感技术和机电一体化等。主持国家自然科学基金面上项目、青年项目、中国博士后基金、中央高校业务费、外国文教专家高校重点外专项目、常州市基础研究计划等项目,作为骨干参与国家自然科学基金委员会重大研究计划“共融机器人基础理论与关键技术研究”、江苏省重点研发计划(产业前瞻与共性关键技术)等项目。已发表学术论文60余篇,其中SCI检索论文30余篇,申请专利20余项。另外,参与撰写中文专著1部,参编外文书章4章。
盛俊杰,中国工程物理研究院总体工程研究所高级工程师。2009年获得四川大学机械设计制造及自动化工学学士学位,2013年获得西安交通大学机械工程专业工学博士学位。主要研究方向为系统工程设计、电活性材料及其应用、传感器设计等,负责科研项目10多项,发表论文20篇、申请专利7项。
引用本文:    
王延杰, 赵世界, 盛俊杰, 汝杰, 赵春, 李树勇. MWCNT/Nafion/MWCNT复合材料的湿度传感性能研究[J]. 材料导报, 2022, 36(20): 21060183-9.
WANG Yanjie, ZHAO Shijie, SHENG Junjie, RU Jie, ZHAO Chun, LI Shuyong. Humidity Sensing Performance of MWCNT/Nafion/MWCNT Composites. Materials Reports, 2022, 36(20): 21060183-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060183  或          http://www.mater-rep.com/CN/Y2022/V36/I20/21060183
1 Fahimeh Beigi, Matin Sadat Saneei Mousavi. Applied Clay Science, 2018, 166, 131.
2 Blank T A, Eksperiandova L P, Belikov K N. Sensors & Actuators B: Chemical, 2016, 228, 416.
3 Emad Esmaeli, Mahya Ganjian, Hamed Rastegar, et al. Sensors & Actuators B: Chemical, 2017, 247, 498.
4 Gan X, Zhao C, Yuan Q, et al. Applied Physics Letters, 2017, 110(15), 151107.
5 Ghosh S, Ghosh R, Kumar Guha P. IEEE Transactions on Nanotechnology, 2016, 15(5), 782.
6 Yang F, Zhang L, Yu K, et al. Materials Reports A:Review Papers, 2018, 32(17), 2940(in Chinese).
杨芳, 张龙, 余堃, 等.材料导报:综述篇, 2018, 32(17), 2940.
7 Guo R, Tang W, Shen C T, et al. Computational Materials Science, 2016, 111(1), 289.
8 Igor A Pašti, Aleksandra Janošević Ležaić, Gordana ćirić-Marjanović. Journal of Solid State Electrochemistry, 2016,20(11), 3061.
9 Kei Saotome, Swetha E Murthy, Jennifer M Kefauver. Nature: International Weekly Journal of Science,2018,554(7693), 481.
10 Mohdisa W H, Hunt A, Hosseinnia S H. Sensors,2019,19(18),3967.
11 Tiwari R, Kim K J. Applied Physics Letters, 2010, 97(24), 2441041.
12 Zhu Z, Horiuchi T, Kruusamäe K. Smart Materials and Structures, 2016, 25(5), 055024.
13 Esmaeli E, Ganjian M, Rastegar H, et al. Sensors & Actuators: B. Chemical, 2017, 247, 498.
14 Li T, Li L H, Sun H W. Advanced Science,2017,4(5),1600404.
15 Palmre V, Lust E, Alar J.J. Mater. Chem, 2011, 21(8), 2577.
16 Ghosh S, Ghosh R, Guha P K, et al. IEEE Transactions on Nanotechno-logy, 2016, 15(5), 782.
17 Fahimeh Beigi, Matin Sadat Saneei Mousavi, Faranak Manteghi, et al. Applied Clay Science, 2018, 166, 131.
18 Wang Y J, Wang J L, Hao M Y, et al. RSC Advances, 2020, 10(46), 27447.
19 Takeuchi I, Asaka K, Kiyohara K, et al. Journal of Physical Chemistry C, 2010, 114(34),14627.
20 Esmaeli E, Ganjian M, Rastegar H, et al. Sensors & Actuators B: Chemical, 2017, 247, 498.
21 Jeon J H, Kee C D, Kee C D. Advanced Functional Materials, 2013, 23(48), 6007.
22 Ru J. Performance Improvements and application research of ionic polymer-metal composite (IPMC) artificial muscle. Ph.D. Thesis,Xi’an Jiaotong University, China, 2018(in Chinese).
汝杰. 离子型电活性聚合物人工肌肉的性能改进及应用研究. 博士学位论文,西安交通大学,2018.
23 Khan A, Alamry K A, Jain R K. RSC Advance, 2019, 9(68), 39721.
24 Ru J, Zhu Z, Wang Y. RSC Advance, 2018, 8(6), 3090.
25 Xiaohui Leng, Dan Luo, Zongxiang Xu. Sensors & Actuators B: Chemical, 2018, 257, 372.
26 Liu Y, Chang L, Hu Y. Smart Materials and Structures, 2018, 27(7), 075055.
27 Beers K M, Sergey Y, Andrew J, et al. The Journal of Physical Chemistry B, 2014, 118(24), 6785.
28 Freger V. The Journal of Physical Chemistry B, 2008, 113(1), 24.
29 Jeck S, Scharfer P, Kind M. Journal of Membrane Science, 2011, 373(1), 74.
30 Kuang Q, Lao C, Wang Z L, et al. Journal of the American Chemical Society, 2007, 129(19), 6070
[1] 李威霖, 王佳, 焦剑. Fe3O4-MWCNTs杂化纳米纸对纤维增强复合材料吸波性能的影响[J]. 材料导报, 2022, 36(5): 20110094-6.
[2] 吴江松, 谭彦妮, 刘晏军. 羟基磷灰石在传感领域应用的研究进展[J]. 材料导报, 2022, 36(20): 20090296-13.
[3] 张尧, 毕恩兵, 茹鹏斌, 陈汉. 一种咪唑基离子液体钝化制备的高效反式钙钛矿太阳能电池[J]. 材料导报, 2022, 36(2): 21010190-6.
[4] 周海云, 何明基, 张磊, 王红强, 梁华彬, 杨健华, 钟新仙. 以Nafion和离子液体作为软模板合成聚苯胺及其在超级电容器中的应用[J]. 材料导报, 2022, 36(18): 21050119-6.
[5] 宋文琦, 霍文娟, 杨金腾, 罗晨, 訾帅, 刘玉坤, 历亚星, 钱立伟. 氨丙基咪唑离子液体修饰纤维素气凝胶吸附剂对刚果红的清除研究:高性能与吸附机理[J]. 材料导报, 2022, 36(12): 21030276-7.
[6] 赵中国, 贾旭妙, 程少华, 王渺, 梁攀旭, 李万顺, 贾仕奎. 聚丙烯/碳纳米管复合材料的结晶性能以及外场响应行为[J]. 材料导报, 2021, 35(8): 8191-8195.
[7] 汤琦, 颜桐桐, 孙豪, 王小蕾, 王春芙, 宗成中. 动态硫化制备多壁碳纳米管/热塑性硫化胶复合材料的相态结构及热电效应[J]. 材料导报, 2021, 35(6): 6206-6211.
[8] 张令坤, 孟俊行, 侯成义, 张青红, 李耀刚, 王宏志. 多刺激响应的MWCNTs-CS/AFP双层致动器:能量的转化与应用[J]. 材料导报, 2021, 35(20): 20155-20160.
[9] 陈定宁, 沈昊宇, 成瑾瑾, 胡美琴. “枣糕状”结构杂多酸离子液体负载磁性复合材料的制备及超声脱硫的催化性能[J]. 材料导报, 2021, 35(12): 12181-12189.
[10] 黄青武, 吴越, 宋武林, 丁雨葵. 碳纤维的电纺制备及结构表征[J]. 材料导报, 2020, 34(Z1): 164-168.
[11] 李绘, 张燕, 张玉琰, 宋风娟, 郦雪, 王浩宇, 曹晓强, 吕宪俊. [BMIM][BF4]-MnO2@SS阳极的制备及对氧氟沙星废水的降解[J]. 材料导报, 2020, 34(6): 6029-6032.
[12] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[13] 陈雪微, 刘巍, 高洪达. 离子液体在不同溶剂中对PVB静电纺丝的影响[J]. 材料导报, 2020, 34(24): 24160-24164.
[14] 郦雪, 张燕, 张玉琰, 宋凤娟, 赵晓涵, Akanyange Stephen Nyabire, 曹晓强, 吕宪俊. [BMIM]PF6离子液体中GO/CuO/CeO2催化剂的制备及可见光活性[J]. 材料导报, 2020, 34(18): 18019-18024.
[15] 赵鹏飞, 耿浩然, 范浩军, 许伟建, 廖禄生, 彭政. 二硫化钼/碳纳米管/丁苯橡胶吸波材料的结构与性能[J]. 材料导报, 2020, 34(14): 14204-14208.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed