Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 20090296-13    https://doi.org/10.11896/cldb.20090296
  无机非金属及其复合材料 |
羟基磷灰石在传感领域应用的研究进展
吴江松, 谭彦妮*, 刘晏军
中南大学粉末冶金国家重点实验室,长沙 410083
Research Progress of the Sensing Applications of Hydroxyapatite
WU Jiangsong, TAN Yanni*, LIU Yanjun
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 5141KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 传感器具有使用便捷、快速、灵敏等优点,在多种检测领域都具有巨大的潜力。羟基磷灰石(Hydroxyapatite, Ca10(PO4)6(OH)2, HAp)是脊椎动物骨骼、牙齿的主要无机成分,被广泛应用于生物医用材料领域。近年来,羟基磷灰石凭借独特的三维网状结构、良好的稳定性、优异的吸附性与离子交换性,被广泛用作传感材料,展示出巨大的潜力。
由于导电能力与力学性能的制约,纯羟基磷灰石单独使用时效果不佳,为了进一步提高其综合性能,研究者们主要尝试对其进行离子(如Ag+、Fe2+、Pb2+等)掺杂改性,或与其他材料(如石墨烯、碳纳米管、导电高分子、生物酶等)制备成复合材料,在提高灵敏度与稳定性、降低检测限等方面取得了一定的进步。与其他气体相比,羟基磷灰石及其复合物对氨气和醇类气体具有更佳的传感性能,可以实现室温下对较低浓度有毒有害气体的准确检测。得益于良好的离子交换性,羟基磷灰石修饰的传感电极可用于检测Pb2+、Cu2+、Hg2+、As3+、Cd2+等多种重金属离子,适用于环保、医疗等领域。羟基磷灰石还可用于检测生物质(包括尿酸、葡萄糖、左旋多巴等10余种),而若作为生物酶的载体,可以实现对特定物质的特异检测,具有良好的选择性。羟基磷灰石还可作为湿敏传感材料,通过掺杂金属离子改性提高导电性能,是改善其湿敏性能的有效途径。另外,羟基磷灰石在光、磁、热传感方面的研究也有报道。
本文首先简单介绍了HAp的基本结构、性能和制备方法,然后重点综述了HAp及其复合材料在气体传感、离子传感、生物传感以及湿度传感领域的研究进展,并对其未来研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴江松
谭彦妮
刘晏军
关键词:  羟基磷灰石  气体传感  离子传感  生物传感  湿度传感    
Abstract: Sensors are convenient, fast and sensitive, and have great potential in various detection fields. Hydroxyapatite(Ca10(PO4)6(OH)2, HAp) is the main inorganic component of the bone and tooth of vertebrate, and has been widely used as biomaterial.In recent years, it has been widely used for sensing materials and has shown great potential, due to its unique three-dimensional network structure, good stability, excellent adsorption capacity, and ion exchange feature.
The performance of pure HAp is limited when used alone due to the constraints of conductivity and mechanical strength. In order to improve its comprehensive performance, researchers mainly try to modify it by ion-doping (Ag+, Fe2+, Pb2+, etc.) or preparing composite materials with other materials, such as graphene, carbon nanotubes, conductive polymers, biological enzymes and so on. Some progress has been made in improving the sensitivity and stability, and reducing the detection limits of HAp. HAp and its composites have better sensing performance for ammonia and alcohol gases than other gases, and can detect lower concentrations of toxic and harmful gases at room temperature. Due to its good ion exchange properties, HAp can detect many heavy metal ions, such as Pb2+, Cu2+, Hg2+, As3+, Cd2+ and so on, and can be used in the fields of environment protection and medical care. HAp can also be used to detect more than ten kinds of biomass, including uric acid, glucose, L-dopa, etc. If used as a carrier of biological enzymes, it can detect specific substances with excellent selectivity. HAp can also be used as a moisture-sensitive material. Modification by doping metal ions to improve the conductivity is a potential way to improve the humidity sensitivity of HAp. In addition, HAp has also been reported in photo, magnetic and thermal sensing applications.
Firstly, we review the basic microstructure, properties and synthesis methods of HAp briefly. Then we mainly focus on the research progress of HAp and its composite in the fields of gas sensing, ion sensing, biosensing and humidity sensing. Finally, the research direction of HAp as sen-sing materials in the future is prospected.
Key words:  hydroxyapatite    gas sensing    ion sensing    biosensing    humidity sensing
发布日期:  2022-10-26
ZTFLH:  TQ174  
基金资助: 湖南省自然科学基金青年基金(2019JJ50797)
通讯作者:  *tanyanni@csu.edu.cn   
作者简介:  吴江松,2019年6月毕业于湘潭大学,获得工学学士学位。现为中南大学粉末冶金研究院硕士研究生,在谭彦妮副教授的指导下进行研究。目前主要研究领域为羟基磷灰石及其复合物气体传感材料。
谭彦妮,中南大学粉末冶金研究院副教授、硕士研究生导师。2004年本科毕业于中南大学,2011年9月获得中南大学博士学位,2008—2010年在英国伯明翰大学进行联合培养博士课题研究。2011.12—2014.12在中南大学冶金工程博士后流动站进行博士后课题研究,出站考核为优秀。近年来主持和参与了国家自然科学基金、湖南省自然科学基金等多个项目。主要研究领域包括生物医用材料、气敏功能材料等。
引用本文:    
吴江松, 谭彦妮, 刘晏军. 羟基磷灰石在传感领域应用的研究进展[J]. 材料导报, 2022, 36(20): 20090296-13.
WU Jiangsong, TAN Yanni, LIU Yanjun. Research Progress of the Sensing Applications of Hydroxyapatite. Materials Reports, 2022, 36(20): 20090296-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090296  或          http://www.mater-rep.com/CN/Y2022/V36/I20/20090296
1 Jiao H, Zhao K, Shi R, et al. Journal of Materials Engineering, 2020, 48(1), 136(in Chinese).
焦华, 赵康, 石蕊, 等. 材料工程, 2020, 48(1), 136.
2 Zou X Y, Zhao Y B, Zhang Z J. Chemical Research, 2019, 30(4), 404(in Chinese).
邹雪艳, 赵彦保, 张治军. 化学研究, 2019, 30(4), 404.
3 Huang J Q, Zheng W S, Yan C Y, et al. Petrochemical Industry Techno-logy, 2019, 26(9), 352(in Chinese).
黄嘉琪, 郑炜山, 颜聪颖, 等. 石化技术, 2019, 26(9), 352.
4 Huang L Q, Wei Y H. China Synthetic Fiber Industry, 2020, 43(2), 49(in Chinese).
黄龙全, 韦永慧. 合成纤维工业, 2020, 43(2), 49.
5 Tan M S, Yang Z J, Yao N, et al. Hans Journal of Nanotechnology, 2019, 9(1), 32(in Chinese).
谭敏斯, 杨志杰, 姚宁, 等. 纳米技术, 2019, 9(1), 32.
6 Zou X Y, Zhao Y B, Zhang Z J. Chinese Journal of Inorganic Chemistry, 2020, 36(4), 747.
7 Li F. Synthesis of metal oxide semiconductor core-shell nanofibers and its application in gas sensitive. Ph.D. Thesis, Jilin University, China, 2018(in Chinese).
李峰. 金属氧化物半导体核壳纳米纤维的构筑及其气敏特性的研究. 博士学位论文, 吉林大学, 2018.
8 Ren W, Cao X Y, Feng L Y, et al. Bulletin of the Chinese Ceramic Society, 2002, 21(1), 38(in Chinese).
任卫, 曹献英, 冯凌云, 等. 硅酸盐通报, 2002, 21(1), 38.
9 Fihri A, Len C, Varma R S, et al. Coordination Chemistry Reviews, 2017, 347, 48.
10 Li H X, Liu Y, Tan Y N, et al. New Journal of Chemistry, 2015, 39(5), 3865.
11 Liu C, Hu W, Li J L, et al. China Environmental Science, 2014, 34(1), 58(in Chinese).
刘成, 胡伟, 李俊林, 等. 中国环境科学, 2014, 34(1), 58.
12 Liu X M, He D Y, Zhou Z, et al. Materials Reports B:Research Papers, 2019, 33(5), 1634(in Chinese).
刘晓梅, 贺定勇, 周正, 等. 材料导报:研究篇, 2019, 33(5), 1634.
13 Zhao S, Zhang X B, Zheng J F. Shandong Ceramics, 2019, 42(5), 3(in Chinese).
赵帅, 张新宝, 郑金峰. 山东陶瓷, 2019, 42(5), 3.
14 Liao C Y. Molecular simulations of protein adsorption on hydroxyapatite. Ph.D. Thesis, South China University of Technology, China, 2014(in Chinese).
廖晨伊. 蛋白质在羟基磷灰石表面吸附的分子模拟研究. 博士学位论文, 华南理工大学, 2014.
15 Qi M L, He K, Huang Z N, et al. JOM, 2017, 69(8), 1354.
16 Shavandi A, Bekhit A, Sun Z F, et al. Journal of Biomimetics Biomate-rials and Biomedical Engineering, 2015, 25, 98.
17 Sadat-Shojai M, Khorasani M T, Dinpanah-Khoshdargi E, et al. Acta Biomaterialia, 2013, 9(8), 7591.
18 Haider A, Haider S, Han S S, et al. RSC Advances, 2017, 7(13), 7442.
19 Pu′ad N, Koshy P, Abdullah H Z, et al. Heliyon, DOI:10.1016/j.he-liyon.2019.e01588.
20 Yang Y S, Wu Q Z, Wang M, et al. Crystal Growth & Design, 2014, 14(9), 4864.
21 Liu Y K, Hou D D, Wang G H. Materials Chemistry and Physics, 2004, 86(1), 69.
22 Chen C Y. Study on synthesis methods of nano-hydroxyapatite and its composites. Master’s Thesis, Beijing University of Chemical Technology, China, 2019(in Chinese).
陈春雨. 纳米羟基磷灰石及其复合材料制备方法的研究. 硕士学位论文, 北京化工大学, 2019.
23 Sun Y G, An S, Qiao J J, et al. Journal of Synthetic Crystals, 2018, 47(4), 727(in Chinese).
孙义高, 安帅, 乔军杰, 等. 人工晶体学报, 2018, 47(4), 727.
24 Gu Y W, Li Z H, Sun M X, et al. Chemistry Select, 2019, 4(43), 12643.
25 Sabu U, Logesh G, Rashad M, et al. Ceramics International, 2019, 45(6), 6718.
26 Rasskazova L A, Korotchenko N M, Zeer G M. Russian Journal of Applied Chemistry, 2013, 86(5), 691.
27 Wang L L, Wang X F, Jiang H T. Journal of Ceramic Processing Research, 2015, 16(4), 376.
28 Kanchana P, Sekar C. Materials Science & Engineering C-Materials for Biological Applications, 2014, 42, 601.
29 Zhang Y. Synthesis of hydroxyapatite nano-crystal agglomerates by template-assisted biomineralization and its electrochemical sensing capability. Ph.D. Thesis, Central South University, China, 2012(in Chinese).
张莹. 基于模板辅助—仿生矿化机理制备羟基磷灰石纳米晶簇及其电化学传感性能研究. 博士学位论文, 中南大学, 2012.
30 Zhou W C. Fabrication and application of sensitive biosensor based on hydroxyapatite nanowires/reduced graphene oxide/gold nanoparticle composite. Master’s Thesis, Zhejiang Sci-Tech University, China, 2018(in Chinese).
周文翠. 羟基磷灰石纳米线/还原氧化石墨烯/纳米金复合材料基生物传感器的制备及应用研究. 硕士学位论文, 浙江理工大学, 2018.
31 Li H X. Synthesis and gas sensing properties of tubular hydroxyapatite and its composites. Master’s Thesis, Central South University, China, 2012(in Chinese).
李会霞. 管状羟基磷灰石及其复合物的制备与气敏性能研究. 硕士学位论文, 中南大学, 2016.
32 Cui Z Y, Luo D D, Feng C. et al. Journal of Zhejiang Sci-Tech University(Natural Sciences Edition), 2019, 41(1), 49(in Chinese).
崔正阳, 罗丹丹, 冯翠, 等. 浙江理工大学学报(自然科学版), 2019, 41(1), 49.
33 Lu L M. Construction and the application of electrochemical biosensor based on novel nanoscaled hybrid materials. Ph.D. Thesis, Hunan University, China, 2011(in Chinese).
卢丽敏. 基于新型纳米复合材料电化学生物传感器的构建及其分析应用. 博士学位论文, 湖南大学, 2011.
34 Bharath G, Madhu R, Chen S M, et al. Journal of Materials Chemistry B, 2015, 3(7), 1360.
35 Tran H V, Huynh C D, Le T D, et al. Electronic Materials Letters, 2020, 16(4), 396.
36 Ajab H, Dennis J O, Abdullah M A. International Journal of Biological Macromolecules, 2018, 113, 376.
37 Alam M K, Rahman M M, Elzwawy A, et al. Electrochimica Acta, 2017, 241, 353.
38 Zhang Q. Research on the synthesis of hydroxyapatite-graphene compo-sites and its gas sensing property. Master’s Thesis, Central South University, China, 2014(in Chinese).
张青. 羟基磷灰石-石墨烯复合物的制备及其气敏性能研究. 硕士学位论文, 中南大学, 2014.
39 Sun M X, Li Z H, Wu S, et al. Electrochimica Acta, 2018, 283, 1223.
40 Kanchana P, Lavanya N, Sekar C. Materials Science & Engineering C-Materials for Biological Applications, 2014, 35, 85.
41 Kanchana P, Sudhan N, Anandhakumar S, et al. RSC Advances, 2015, 5(84), 68587.
42 Wang L D. Electrochemical detection of transgenic insect-resistant BT protein based on hydroxyapatite modified electrode. Master’s Thesis, Huazhong Agricultural University, China, 2019(in Chinese).
王柳丁. 羟基磷灰石修饰电极应用于电化学检测转基因抗虫BT蛋白的研究. 硕士学位论文, 华中农业大学, 2019.
43 Bunkoed O, Donkhampa P, Nurerk P. Microchemical Journal, DOI: 10.1016/j.microc.2020.105127.
44 Van H N, Vu N H, Pham V H, et al. Journal of Alloys and Compounds, DOI: 10.1016/j.jallcom.2020.154288.
45 Horvath B, Rigo M, Guba S, et al. Heliyon, DOI: 10.1016/j.he-liyon.2019.e01507.
46 Chen F F, Zhu Y J, Chen F, et al. ACS Nano, 2018, 12(4), 3159.
47 Ignjatovic N L, Mancic L, Vukovic M, et al. Scientific Reports, DOI: 10.1038/s41598-019-52885-0.
48 Chen C L, He J B, Liu W, et al. Sensor World, 2004, 10(4), 11(in Chinese).
陈长伦, 何建波, 刘伟, 等. 传感器世界, 2004, 10(4), 11.
49 Li G W, Lu J M, Qin D Z, et al. Chemical Industry and Engineering Progress, 2013(10), 2409(in Chinese).
李广伟, 鲁俊民, 秦东振, 等. 化工进展, 2013(10), 2409.
50 Li Y, Fu J Y, Hou Y C. Science Technology and Engineering, 2018, 18(3), 132(in Chinese).
李颖, 付金宇, 侯永超. 科学技术与工程, 2018, 18(3), 132.
51 Wang Y Y, Qin H, Yang Y C, et al. Transducer and Microsystem Technologies, 2018, 37(11), 87(in Chinese).
王洋洋, 秦浩, 杨永超, 等. 传感器与微系统, 2018, 37(11), 87.
52 Zhang Z Y. Synthesize of semiconductor metal oxide nanomaterials and their gas-sensing applications. Ph.D. Thesis, Zhejiang University, China, 2018(in Chinese).
张子悦. 金属氧化物半导体纳米材料的制备及其气敏传感性能的研究. 博士学位论文, 浙江大学, 2018.
53 Dong X C. Gas sensitivity and simulation studies on Au-deposited and nitrogen-doped TiO2 nanotubes detecting SF6 decomposed components. Master’s Thesis, Chongqing University, China, 2017(in Chinese).
董星辰. 金沉积及氮掺杂二氧化钛纳米管检测SF6分解组分的气敏响应特性研究. 硕士学位论文, 重庆大学, 2017.
54 Zhang D X. The study on zirconia NO2 sensor. Master’s Thesis, Ningbo University, China, 2009(in Chinese).
章东兴. 氧化锆基NO2传感器的研究. 硕士学位论文, 宁波大学, 2009.
55 Tan Y N, Liu Y J, Luo S Z, et al. Advances in Chemical Engineering, Open Access Ebooks, USA, 2019.
56 Mene R U, Mahabole M P, Aiyer R C, et al. The Open Applied Physics Journal, 2010,3, 10.
57 Mene R U, Mahabole M P, Sharma R, et al. Vacuum, 2011, 86(1), 66.
58 Khairnar R S, Mene R U, Munde S G, et al. In: 4th Nanoscience and Nanotechnology Symposium. Indonesia, 2011.
59 Mene R U, Mahabole M P, Khairnar R S. Radiation Physics and Chemistry, 2011, 80(6), 682.
60 Mene R U, Mahabole M P, Mohite K C, et al. Materials Research Bulletin, 2014, 50, 227.
61 Mene R U, Mahabole M P, Mohite K C, et al. Journal of Alloys and Compounds, 2014, 584, 487.
62 Narwade V N, Anjum S R, Kokol V, et al. Cellulose, 2019, 26(5), 3325.
63 Mahabole M P, Mene R U, Khairnar R S. Advanced Materials Letters, 2013, 4(1), 46.
64 Sudhan N, Lavanya N, Leonardi S G, et al. Sensors (Basel), DOI: 10.3390/s19153437.
65 Taha S, Begum S, Narwade V N, et al. Materials Chemistry and Physics, DOI: 10.1016/j.matchemphys.2019.122228.
66 Khairnar R S, Anjum S R, Mahabole M P. International Journal of Engineering Science and Innovative Technology, 2014, 3(3), 253.
67 Anjum S R, Khairnar R S. Sensors & Transducers, 2016, 206(11), 1.
68 Anjum S R, Khairnar R S. Sensing and Imaging, DOI: 10.1007/s11220-016-0139-2.
69 Anjum S R, Narwade V N, Bogle K A, et al. Nano-Structures & Nano-Objects, 2018, 14, 98.
70 Luo L L, Liu Y, Tan Y N, et al. Journal of Central South University, 2016, 23(1), 18.
71 Tan Y N, Li H X, Liu Y, et al. RSC Advances, DOI: 10.1039/c6ra12334a.
72 Anjum S R, Khairnar R S. In: the Seventh International Conference on Sensor Device Technologies and Applications. Nice, 2016, pp. 48.
73 Li P F, Yao A H, Zhou T, et al. Journal of Materials Science & Techno-logy, 2013, 29(11), 1104.
74 Safavi A, Sorouri M, Khanipour P. Electroanalysis, 2014, 26(2), 359.
75 Ajab H, Khan A A A, Dennis J O, et al. In: 3rd International Confe-rence on Process Engineering and Advanced Materials. Kuala Lumpur, 2014, pp.813.
76 Gao F, Gao N, Nishitani A, et al. Journal of Electroanalytical Chemistry, 2016, 775, 212.
77 Kaur B, Srivastava R, Satpati B. New Journal of Chemistry, 2015, 39(7), 5137.
78 Ren H Y. Studies and applications of the separation and preconcentration of trace Pb,Cr,Cd with nanometer-size Si-HAp and determination by atomic spectrometry. Master’s Thesis, Xiangtan University, China, 2010(in Chinese).
任红英. 纳米Si-HAP分离富集-原子吸收法测定痕量铅、铬、镉的研究与应用. 硕士学位论文, 湘潭大学, 2010.
79 Lavanya N, Sudhan N, Kanchana P, et al. RSC Advances, 2015, 5(65), 52703.
80 Zhang Y, Liu Y, Ji X, et al. Materials Letters, 2012, 78, 120.
81 Zhu Q Y, Li L, Chen X L. Journal of Hygiene Research, 2019, 48(3), 512(in Chinese).
朱蔷云, 李伦, 陈雪岚. 卫生研究, 2019, 48(3), 512.
82 Chen Y, Zhou W C, Ma J H, et al. Microscopy Research and Technique, 2020, 83(3), 268.
83 Kanchana P, Navaneethan M, Sekar C. Materials Science and Enginee-ring: B, 2017, 226, 132.
84 Zhang Y, Liu Y, Ji X B, et al. Journal of Materials Chemistry, 2011, 21(38), 14428.
85 Zhang Y, Zhang W, Zhang Q, et al. Analyst, 2014, 139(21), 5362.
86 Tagaya M, Ikoma T, Hanagata N, et al. In: 26th International Japan-Korea Seminar on Ceramics. Tsukuba, 2009.
87 Prongmanee W, Alam I, Asanithi P. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102, 415.
88 Kanchana P, Radhakrishnan S, Navaneethan M, et al. Journal of Nanoscience and Nanotechnology, 2016, 16(6), 6185.
89 Yang Z P, Shang X G, Zhang C J, et al. Sensors and Actuators B: Che-mical, 2014, 201, 167.
90 Hasna K, Kumar S S, Komath M, et al. Physical Chemistry Chemical Physics, 2013, 15(21), 8106.
91 Jiang W T, Tian D Z, Zhang L, et al. Microchimica Acta, 2017, 184(11), 4375.
92 Erdem A, Congur G. Electroanalysis, 2018, 30(1), 67.
93 Lyu L L, Wei X B, Wang J. In: The 13th National Conference on Electroanalytical Chemistry. Nanchang, China, 2017(in Chinese).
吕刘林, 魏徐兵, 王军. 第十三届全国电分析化学学术会议. 南昌, 2017.
94 Sun J. Study on non-enzymatic glucose biosensor based on hydroxyapatite. Master’s Thesis, Northeastern University, China, 2015(in Chinese).
孙君. 羟基磷灰石基无酶葡萄糖生物传感器的研究. 硕士学位论文, 东北大学, 2015.
95 Jiang Y Y, Liu H Y, Qi X, et al. Chemistry Select, 2018, 3(9), 2542.
96 Li J H, Kuang D Z, Feng Y L, et al. Microchimica Acta, 2011, 176(1-2), 73.
97 Dai Y X, Cai Y Y, Zhao Y F, et al. Biosens Bioelectron, 2011, 28(1), 112.
98 Ribeiro T P, Monteiro F J, Laranjeira M S. Ceramics International, 2020, 46(10), 16590.
99 Stanca S E, Matthaus C, Neugebauer U, et al. Nanomedicine, 2015, 11(7), 1831.
100 Ma S S, Liu Y, Yan L Y. Technology Wind, 2018(30), 11(in Chinese).
麻姗姗, 柳钰, 燕丽颖. 科技风, 2018(30), 11.
101 Wang R. Study of resistive-type humidity sensor based on several mesoporous materials. Ph.D. Thesis, Jilin University, China, 2010(in Chinese).
王蕊. 基于几种介孔结构材料的电阻型湿度传感器的性能研究. 博士学位论文, 吉林大学, 2010.
102 Shen J Q, Ren Y S, Wang R L, et al. Journal of Ceramics, 1997(1), 1(in Chinese).
沈君权, 任雅姗, 王瑞莉, 等. 陶瓷学报, 1997(1), 1.
103 Szalaj U, Swiderska-Sroda A, Chodara A, et al. Nanomaterials (Basel), DOI: 10.3390/nano9071005.
104 Shi Y B, Chen B J, Pu L, et al. Sensor World, 2001(3), 11(in Chinese).
施云波, 陈宝军, 浦龙, 等. 传感器世界, 2001(3), 11.
105 Gu Y W. Study on humidity sensitivity of hydroxyapatite. Master’s Thesis, Jilin University, China, 2020(in Chinese).
顾煜炜. 羟基磷灰石的湿敏性能研究. 硕士学位论文, 吉林大学, 2020.
106 Wang Y Y, Wang T, Qi Y. Bulletin of the Chinese Ceramic Society, 2014, 33(5), 1146(in Chinese).
王阳阳, 汪涛, 祁燕. 硅酸盐通报, 2014, 33(5), 1146.
107 Pan X G, Peng X Z, Li B R. Journal Huazhong Central China University of Science and Tedimelogy, 2014(3), 13(in Chinese).
潘晓光, 彭贤柱, 李标荣. 华中工学院学报, 2014(3), 13.
108 Dai Y. Journal of Dalian Institute of Light Inoustry, 1998, 17(3), 3(in Chinese).
戴怡. 大连轻工业学院学报, 1998, 17(3), 3.
109 Wang Y, Wang X R, Liu B L. Journal of Changchun Institute of Optics and Fine Mechanics, 2002(4), 67(in Chinese).
王艳, 王学荣, 刘博林. 长春理工大学学报, 2002(4), 67.
110 Owada H, Yamashita K, Umegaki T, et al. Solid State Ionics, 1989, 35(3), 401.
111 Kobune M, Iida H, Sorai Y, et al. Materials Science Research International, 1999, 5(2), 116.
112 Tudorache F, Petrila I, Popa K, et al. Applied Surface Science, 2014, 303, 175.
[1] 肖萍萍, 张国军, 孙忠月. 仿生固态纳米孔在生物传感中的应用进展[J]. 材料导报, 2022, 36(8): 20080071-11.
[2] 王延杰, 赵世界, 盛俊杰, 汝杰, 赵春, 李树勇. MWCNT/Nafion/MWCNT复合材料的湿度传感性能研究[J]. 材料导报, 2022, 36(20): 21060183-9.
[3] 李静芝, 高志贤, 李双, 赵旭东, 秦英凯, 刘辉, 韩铁. 上转换纳米颗粒的发光机理、制备及生物应用进展[J]. 材料导报, 2022, 36(14): 20110168-11.
[4] 陈达, 刘美含, 张伟, 练美玲. 具有类过氧化物酶活性的纳米材料在比色分析中的研究进展[J]. 材料导报, 2022, 36(13): 20090055-14.
[5] 徐冉, 李智慧, 吴一楠, 李风亭. 金属有机骨架材料固定化酶的研究进展[J]. 材料导报, 2021, 35(z2): 285-293.
[6] 郝喜娟, 赵沈飞, 张春媚, 胡芳馨, 杨鸿斌, 郭春显. 基于纳米仿生酶构建电化学生物传感器用于活性氧检测[J]. 材料导报, 2021, 35(3): 3183-3193.
[7] 刘文清, 张涛. 细菌视紫红质在生物传感器中的应用进展[J]. 材料导报, 2021, 35(23): 23171-23182.
[8] 张智, 马幼平, 周子凌, 魏花丽, 赵丽娜. 空心球羟基磷灰石等离子喷涂粉体的制备[J]. 材料导报, 2021, 35(2): 2019-2025.
[9] 戈明亮, 李越颖, 梁国栋. 纳米酶在传感检测中的应用研究进展[J]. 材料导报, 2021, 35(19): 19195-19203.
[10] 申欣, 孟昭旭, 廉鹤. 纳米羟基磷灰石复合材料在癌症治疗中的应用进展[J]. 材料导报, 2020, 34(Z2): 88-90.
[11] 齐美丽, 梅凤策, 黄浩, 崔凤坤. 一步法合成锶离子掺杂羟基磷灰石多孔微球[J]. 材料导报, 2020, 34(Z1): 63-65.
[12] 钏定泽, 颜廷亭, 刘金坤, 刘继涛, 陈希亮, 陈庆华. 羟基磷灰石晶体仿生阵列的制备研究进展[J]. 材料导报, 2020, 34(9): 9069-9074.
[13] 袁竞优, 贾庆明, 陕绍云. 碳羟基磷灰石纳米材料的研究进展[J]. 材料导报, 2020, 34(13): 13084-13090.
[14] 于翔, 桂久青, 张雪寅, 严亮, 卢晓龙. 尼龙66/纳米羟基磷灰石复合纤维膜的制备及骨缺损修复性能评价[J]. 材料导报, 2020, 34(12): 12185-12190.
[15] 宋江,王腾蛟,冯涛,CHAN Siew Yin,荣帆,李鹏,黄维. 柔性电子在糖尿病诊断、治疗及护理中的应用综述[J]. 材料导报, 2020, 34(1): 1126-1134.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed