Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 20090196-11    https://doi.org/10.11896/cldb.20090196
  无机非金属及其复合材料 |
Ti3AlC2陶瓷粉末的研究现状及进展
高丽娜1, 陈文革1,2, 李树丰1,2,*
1 西安理工大学材料科学与工程学院,西安 710048
2 西安市先进粉末冶金材料和新技术重点实验室,西安 710048
Research Status and Progress of Ti3AlC2 Ceramic Powder
GAO Lina1, CHEN Wenge1,2, LI Shufeng1,2,*
1 School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China
2 Xi’an Key Laboratory of Advanced Powder Metallurgy Materials and New Technology, Xi’an 710048, China
下载:  全 文 ( PDF ) ( 11624KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 层状三元钛铝化碳Ti3AlC2是MAX相家族中重要的一员,其因兼具金属与陶瓷的双重性能优点,引起了广泛关注。它是一种潜在的功能材料和结构材料,可作为高温结构材料、热交换器材料、耐腐蚀构件、低摩擦系数材料、电接触材料、核燃料包壳材料、损伤敏感部件等,具有广泛的应用前景。
但是合成Ti3AlC2的窗口非常窄,目前制备高纯Ti3AlC2块体材料大多采用原位反应法,不仅合成物中Ti3AlC2的纯度难以控制,制品外形简单,尺寸小,而且很难实现工业化生产。而常规陶瓷材料的制造大多是先合成相应的高纯陶瓷粉末,然后再通过粉体的不同设计,制备出所需要的陶瓷材料。因此,合成高纯Ti3AlC2陶瓷粉末对于实现Ti3AlC2陶瓷材料的工业化生产至关重要。
学者们针对制备高纯Ti3AlC2陶瓷粉末展开了深入、系统的研究。目前主要的制备方法有自蔓延高温合成法、无压烧结法、机械合金化法、机械合金化-热处理法、熔盐法、微波烧结法等,这些方法均可制备出微米或纳米级的高纯Ti3AlC2粉末。其中,无压烧结法工艺简单,适用范围广。众多研究表明,添加Sn、Si、Ni、B2O3等各种助剂可显著降低其合成温度,并提高产物中Ti3AlC2相的纯度。熔盐法可在较低的温度下合成分散性较好且纯度较高的纳米级Ti3AlC2粉体,合成产物的形貌及尺寸可控。这两种制备技术具有一定的优异性。
本文综述了国内外学者针对高纯Ti3AlC2陶瓷粉末的研究所取得的最新进展,分别对Ti3AlC2陶瓷粉末的各种制备技术、合成机理、性能对比及应用前景进行了梳理,最后对Ti3AlC2陶瓷粉末研究领域内亟待解决的问题进行了分析与讨论。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高丽娜
陈文革
李树丰
关键词:  MAX相  Ti3AlC2粉末  制备技术  合成机理    
Abstract: Ternary layered Ti3AlC2, an important member of the MAX phases, attracted extensive attention due to its advantages of both metal and ceramic concurrently. As a potential functional and structural material, Ti3AlC2 has wide application prospects as high temperature structural materials, heat exchanger materials, corrosion-resistant components, low-friction-coefficient materials, electrical contact materials, nuclear fuel cladding materials, damage-sensitive parts and so on.
However, the synthesis window for Ti3AlC2 is quite narrow. At present, the in-situ reaction method is mostly used to prepare high-purity Ti3AlC2 bulk materials. The purity of the product prepared by this method is difficult to control, the appearance is simple, the size is small, and it is difficult to industrialize. In general, to manufacture the conventional ceramic materials, the corresponding high-purity ceramic powder is synthesized first, and then to prepare the required ceramic materials through different designs of the powder. So, the synthesis of high-purity Ti3AlC2 powder is vital for the manufacture of Ti3AlC2 ceramic materials.
In-depth and systematic research has been carried out on the synthesis of high-purity Ti3AlC2 ceramic powder. Currently, the main preparation methods include self-propagation high-temperature synthesis, pressureless sintering, mechanical alloying, mechanical alloying-heat treatment, molten salt, microwave sintering, etc., all of which can prepare micron or nano high-purity Ti3AlC2 powder. Among them, the pressureless sintering method has a simple process and a wide range of applications. Numerous studies have shown that adding additives such as Sn, Si, Ni and B2O3 can significantly reduce the synthesis temperature and increase the purity of the Ti3AlC2 phase in the product. Nano Ti3AlC2 powder with good dispersibility and high purity can be synthesized by molten salt method at a lower temperature, and its morphology and size are controllable. These two preparation methods are superior to others.
This paper reviewed the latest research progress of high-purity Ti3AlC2 powder. The preparation technology, synthesis mechanism, property comparison and future application of the Ti3AlC2 powder were summarized. Finally, the urgent problems in the Ti3AlC2 powder research were analyzed and discussed.
Key words:  MAX phase    Ti3AlC2 powder    preparation technology    synthesis mechanism
发布日期:  2022-10-26
ZTFLH:  TF12  
基金资助: 国家自然科学基金(51871180); 国家重点研发计划(2021YFB3701203);浙江省自然科学基金(LGG20E010004); 台州市科技计划项目(1902gy16)
通讯作者:  *shufengli@xaut.edu.cn   
作者简介:  高丽娜,2009年6月毕业于西安理工大学,获得工学硕士学位。现为西安理工大学博士研究生,在李树丰教授和陈文革教授的共同指导下进行研究。目前主要研究领域为MAX/金属基复合材料。
李树丰,西安理工大学材料科学与工程学院教授、博士研究生导师。2009年于日本大学获得机械工学博士学位。2009年7月至2013年7月,在日本大阪大学结合研究所进行博士后研究工作。目前主要从事粉末冶金、陶瓷及金属基复合材料的基础研究。近年来,在Carbon、Acta Materialia、MSEA、Composites Part A、《材料研究学报》等国内外著名期刊上共发表SCI/EI学术论文100余篇,被引超1 600余次。
引用本文:    
高丽娜, 陈文革, 李树丰. Ti3AlC2陶瓷粉末的研究现状及进展[J]. 材料导报, 2022, 36(20): 20090196-11.
GAO Lina, CHEN Wenge, LI Shufeng. Research Status and Progress of Ti3AlC2 Ceramic Powder. Materials Reports, 2022, 36(20): 20090196-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090196  或          http://www.mater-rep.com/CN/Y2022/V36/I20/20090196
1 Barsoum M W. Progress in Solid State Chemistry, 2000, 28, 201.
2 Wang J Y, Zhou Y C. Annual Review of Materials Research, 2009, 39, 415.
3 Wang X H, Zhou Y C. Journal of Materials Science & Technology, 2010, 26, 385.
4 Sun Z M. International Materials Reviews, 2011, 56, 143.
5 Eklund P, Beckers M, Jansson U, et al. Thin Solid Films, 2010, 518, 1851.
6 Radovic M, Barsoum M W. American Ceramic Society Bulletin, 2013, 92, 20.
7 Zheng L Y, Zhou Y C, Feng Z H. Aerospace Materials and Technology, 2013, 43(6), 1(in Chinese).
郑丽雅, 周延春, 冯志海. 宇航材料工艺, 2013, 43(6), 1.
8 Zhang H, Wang X H, Zhou Y C. Advanced Ceramics, 2019, 40(3), 150(in Chinese).
张辉,王晓辉,周延春.现代技术陶瓷,2019, 40(3), 150.
9 Low I M. Advances in science and technology of Mn+1AXn phases, Woodhead Publishing, UK, 2012.
10 Barsoum M W. MAX Phases: Properties of machinable ternary carbides and nitrides, Wiley-VCH, Germany, 2013.
11 Wang J H. Preparation and properties of layered ceramic Ti3AlC2. Master’s Thesis, Harbin Engineering University, China, 2010(in Chinese).
王家华. 层状陶瓷Ti3AlC2的制备及性能研究. 硕士学位论文,哈尔滨工程大学,2010.
12 Li C. Study on SHS/PHIP prepared technology and the properties and applications of Ti3AlC2 ceramics material. Ph.D. Thesis, Harbin Enginee-ring University, China, 2007(in Chinese).
李翀.Ti3AlC2陶瓷材料的SHS/PHIP制备工艺及其性能与应用研究. 博士论文,哈尔滨工程大学, 2007.
13 Xu W W. Study on the heat treatment of Ti3AlC2 ceramic power and corrosion resistance of the block. Master’s Thesis, Harbin Normal University, China, 2016(in Chinese).
徐微微. 自蔓延燃烧合成粉体Ti3AlC2陶瓷粉体的热处理及块体的耐腐蚀性能研究. 硕士学位论文,哈尔滨师范大学, 2016.
14 Pietzka M A, Schuster J C. Journal of Phase Equilibria, 1994, 15, 392.
15 Tzenov N V, Barsoum M W. Journal of the American Ceramic Society, 2000, 83, 825.
16 Zou Y, Sun Z M, Tada S, et al. Scripta Materialia, 2006, 55, 767.
17 Gao L N, Han T, Guo Z L, et al. Advanced Powder Technology, 2020, 31, 3533.
18 Pazniak A, Bazhin P, Shchetinin I, et al. Ceramics International, 2019, 45, 2020.
19 Lu X P, Zhou Y C. International Journal of Applied Ceramic Technology, 2010, 7, 744.
20 Akhlaghi M, Tayebifard S A, Salahi E, et al. Ceramics International, 2018, 44, 9671.
21 Sun Z, Li M, Hu L F, et al. Journal of the American Ceramic Society, 2009, 92, 1695.
22 Chen D Q, Tian X J, Wang H M, et al. Materials Letters,2014,129,98.
23 Guo J M, Dai Z F, Liu G Y, et al. 2007, 36(Z1), 124(in Chinese).
郭俊明, 戴志福, 刘贵阳, 等. 稀有金属材料与工程,2007,36(Z1), 124.
24 Liu Y, Zhang J B, Li Y, et al. Materials Reports A: Review Papers, 2015, 29(6), 517(in Chinese).
刘耀, 张建波, 李勇, 等. 材料导报:综述篇, 2015, 29(6), 517.
25 Zhai H X, Ai M X, Huang Z Y, et al. Key Engineering Materials, 2007, 336, 1394.20090196-20090196-
26 Wang W J, Gauthier-Brunet V, Bei G P, et al. Materials Science and Engineering A, 2011, 530, 168.
27 Naguib M, Mochalin V N, Barsoum M W, et al. Advanced Materials, 2014, 26, 992.
28 Naguib M, Kurtoglu M, Presser V, et al. Advanced Materials, 2011, 23, 4201.
29 Mashtalir O, Naguib M, Mochalin V N, et al. Nature Communications, 2013, 4, 1716.
30 Lukatskaya M R, Mashtalir O, Ren C E, et al. Science, 2013, 341, 1502.
31 Naguib M, Jérémy C, Dyatkin B, et al. Electrochemistry Communications, 2012, 16, 61.
32 Zhou Y C, Wang X H, Sun Z M, et al. Journal of Materials Chemistry, 2001, 11, 2335.
33 Song G M, Pei Y T, Sloof W G, et al. Scripta Materialia, 2008, 58, 13.
34 Farle A S, Kwakernaak C, van der Zwaag S, et al. Journal of the European Ceramic Society, 2015, 35, 37.
35 Whittle K R, Blackford M G, Aughterson R D, et al. Acta Materialia, 2010, 58, 4362.
36 Hoffman E, Vinson D, Sindelar R, et al. Nuclear Engineering and Design, 2012, 244, 17.
37 Huang X C, Feng Y, Dou Y, et al. Scripta Materialia, 2016, 113, 114.
38 Barsoum M W. Journal of the Electrochemical Society, 2001, 148, 551.
39 ChenK X, Guo J M, Ge Z B, et al. Rare Metal Materials and Enginee-ring, 2002, 31(Z1), 20(in Chinese).
陈克新, 郭俊明, 葛振斌, 等. 稀有金属材料与工程, 2002, 31(Z1), 20.
40 Guo J M, Guo Y L, Huang Z L. Journal of Mengzi Teachers’ College, 2002, 4(6), 6(in Chinese).
郭俊明, 郭亚力, 黄兆龙. 蒙自师范高等专科学校学报, 2002, 4(6), 6.
41 Ge Z B, Chen K X, Guo J M, et al. Journal of Inorganic Materials, 2003, 18(2), 173(in Chinese).
葛振斌, 陈克新, 郭俊明, 等. 无机材料学报, 2003, 18(2), 173.
42 Guo J M, Chen K X, Liu G H, et al. Journal of Functional Materials, 2004, 35(6), 763(in Chinese).
郭俊明, 陈克新, 刘光华, 等. 功能材料, 2004, 35(6), 763.
43 Guo J M, Chen K X, Ge Z B, et al. Rare Metal Materials and Enginee-ring, 2003, 32(7), 561(in Chinese).
郭俊明, 陈克新, 葛振斌, 等. 稀有金属材料与工程, 2003, 32(7), 561.
44 Guo J M, Chen K X, Ge Z B, et al. Acta Metallurgica Sinica, 2003, 39(4), 409(in Chinese).
郭俊明, 陈克新, 葛振斌, 等. 金属学报, 2003, 39(4), 409.
45 Guo J M, Chen K X, Zhou H P, et al. Acta Materiae Composite Sinica, 2004, 21(3), 59(in Chinese).
郭俊明, 陈克新, 周和平, 等. 复合材料学报, 2004, 21(3), 59.
46 Wang Z D, Hu H Q, Li Q C. Acta Metallurgica Sinica, 1995, 8, 137.
47 Ge Z B, Chen K X, Guo J M, et al. Journal of the European Ceramic Society, 2003, 23, 567.
48 Guo J M, Chen K X, Ge Z B, et al. Journal of Inorganic Materials, 2003, 18(1), 251(in Chinese).
郭俊明, 陈克新, 葛振斌, 等. 无机材料学报, 2003, 18(1), 251.
49 Ge Z B, Chen K X, Zhou H P. Key Engineering Materials, 2002, 224, 539.
50 Jiang B C, Liu F F, Tang L Y, et al. Ordnance Material Science and Engineering, 2015, 38(5), 29(in Chinese).
姜炳春, 刘方方, 唐联耀, 等. 兵器材料科学与工程, 2015, 38(5), 29.
51 Lopacinski M, Puszynski J, Lis J. Journal of American Ceramic Society, 2001, 84, 3051.
52 Tomoshige R, Matsushita T. Journal of the Ceramic Society of Japan, 1996, 104, 94.
53 Wang C A, Qi L, Zhou A G, et al. Rare Metal Materials and Enginee-ring, 2003, 33, 41.
54 Wang C A, Qi L, Zhou A G, et al. In: 2003 Annual Meeting of Chinese Ceramic Society. Beijing, China, 2003, pp.326(in Chinese).
汪长安, 齐亮, 周爱国, 等. 中国硅酸盐学会2003年学术年会. 北京, 2003, pp.326.
55 Peng C Q, Wang C A, Huang Y. Rare Metal Materials and Engineering, 2005, 34(Z1), 540(in Chinese).
彭春庆, 汪长安, 黄勇. 稀有金属材料与工程, 2005, 34(Z1), 540.
56 Peng C Q, Wang C A, Qi L, et al. Materials Science Forum, 2005, 475, 1247.
57 Peng C Q, Wang C A, Song Y, et al. Materials Science and Engineering: A, 2006, 428, 54.
58 Ai M X, Zhai H X, Zhou Y, et al. Journal of the American Ceramic Society, 2006, 89, 1114.
59 Li S, Xiang W H, Zhai H X, et al. Materials Research Bulletin, 2008, 43, 2092.
60 Po L, Lin T W, Xiong N, et al. Powder metallurgy industry, 2011, 21(4), 33(in Chinese).
卜蕾, 林同伟, 熊宁, 等. 粉末冶金工业, 2011, 21(4), 33.
61 Panigrahi B B, Gracio J J, Chu M C, et al. International Journal of Applied Ceramic Technology, 2010, 7, 752.
62 Li L, Zhou A G, Li Z Y, et al. Bulletin of the Chinese Ceramic Society, 2013, 32(1), 132(in Chinese).
李良,周爱国,李正阳,等. 硅酸盐通报, 2013, 32(1), 132.
63 Li L, Chen Y Q, Ma S B, et al. Journal of Nanyang Normal University, 2020, 19(6), 24(in Chinese).
李良,陈玉奇,马世榜,等. 南阳师范学院学报,2020, 19(6), 24.
64 Li L, Zhou A G, Xu L, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2013, 28, 882.
65 Yang C, Jia S S, Jin S Z, et al. Rare Metal Materials and Engineering, 2007, 36(Z3), 282(in Chinese).
杨晨,贾树胜,金松哲,等,稀有金属材料与工程,2007,36(Z3),282.
66 Yang C. Preparation of machinable conductive ceramics Ti3AlC2 and Cu/Ti3AlC2 composites. Ph.D. Thesis, Jilin University, China, 2009(in Chinese).
杨晨. Ti3AlC2可加工导电陶瓷及其铜基复合材料的研制. 博士学位论文, 吉林大学, 2009.
67 Yang C, Jin S Z, Xu C Y, et al. Key Engineering Materials, 2008, 368, 983.
68 Yang C, Jin S Z, Liang B Y, et al. Journal of Materials Processing Technology, 2009, 209, 871.
69 Yang C, Jin S, Liang B, et al. Journal of Alloys & Compounds, 2009, 472, 79.
70 Li S B, Zhai H X, Bei G P, et al. Ceramics International, 2007, 33, 169.
71 Wang X Y, Wu L L, Gao H, et al. Scientia Sinica Chimica, 2018, 48(3), 289(in Chinese).
王新宇, 武立立, 高红, 等. 中国科学:化学, 2018, 48(3), 289.
72 Li S B, Zhai H X, Bei G P, et al. Materials Science & Technology, 2006, 22, 667.
73 Zhao Q Z. China Ceramics, 2018, 54(6), 62(in Chinese).
赵秋植. 中国陶瓷, 2018, 54(6), 62.
74 Jin S Z, Wang L, Wu H, et al. Transactions of Materials and Heat Treatment, 2008, 29(3), 35(in Chinese).
金松哲, 王蕾, 吴化, 等. 材料热处理学报, 2008, 29(3), 35.
75 Wang M Z, Liang B Y, Han X. Journal of Yanshan University, 2009, 33(1), 1(in Chinese).
王明智, 梁宝岩, 韩欣. 燕山大学学报, 2009, 33(1), 1.
76 Han X, Wang M Z, Liang B Y. Rare Metal Materials and Engineering, 2010, 39(Z1), 204(in Chinese).
韩欣, 王明智, 梁宝岩. 稀有金属材料与工程, 2010, 39(Z1), 204.
77 Liang B Y, Wang M Z, Wang L. Materials Science and Engineering of Powder Metallurgy, 2012, 17(3), 327(in Chinese).
梁宝岩, 王明智, 王蕾. 粉末冶金材料科学与工程, 2012, 17(3), 327.
78 Liu K X, Jin S Z. Journal of Changchun University of Technology (Natural Science Edition), 2012, 33(1), 106(in Chinese).
刘可心, 金松哲. 长春工业大学学报(自然科学版), 2012, 33(1), 106.
79 Liu K X, Jin S Z. Journal of Changchun University of Technology (Natural Science Edition), 2012, 33(1), 106.
80 Liu K X. Preparation and characterize of Ti3AlC2/Al composite material. Master’s Thesis, Changchun University of Technology, China, 2012(in Chinese).
刘可心. Ti3AlC2/Al复合材料的制备与表征. 硕士学位论文, 长春工业大学, 2012.
81 Liu K X. Bulletin of the Chinese Ceramic Society, 2014, 33(5), 1138(in Chinese).
刘可心. 硅酸盐通报, 2014, 33(5), 1138.
82 Liu K X, Jin S Z, Yang C. Journal of Synthetic Crystals, 2015, 44(12), 3715(in Chinese).
刘可心, 金松哲, 杨晨. 人工晶体学报, 2015, 44(12), 3715.
83 Zhu J F, Qi G Q, Yang H B, et al. Materials Science Forum, 2010, 658, 181.
84 Galvin T, Hyatt N C, Rainforth W M, et al. Journal of the European Ceramic Society, 2018, 38, 4585.
85 Lei Y. The research on synthesis and application of ternary layered carbide Cr2AlC. Master’s Thesis, Xihua University, China, 2013(in Chinese).
雷宇. 三元层状碳化物Cr2AlC陶瓷粉体的合成及应用研究. 硕士学位论文,西华大学,2013.
86 Yang L X, Wang Y, Zhang H L, et al. Materials Research Letters, 2019, 7, 361.
87 Li Z, Wang L, Sun D, et al. Mater Sci Eng. B, 2015, 191, 33.
88 Liu H J, Wang Y, Yang L X, et al. Journal of Materials Science and Technology, 2020, 37, 77.
89 Chen W H, Tang J C, Shi X W, et al. International Journal of Applied Ceramic Technology, 2020, 17, 778.
90 Tang H. Reactive synthesis of polycrystalline Ti3AlC2 and its sintering mechanism. Ph.D. Thesis, Hefei University of Technology, China, 2016(in Chinese).
汤海. Ti3AlC2的制备及其烧结机理研究. 博士学位论文,合肥工业大学,2016.
91 Qian X K. Research on combustion synthesis and properties of layered Ti3AlC2. Ph.D. Thesis, Harbin Institute of Technology, China, 2010(in Chinese).
钱旭坤. 层状Ti3AlC2的燃烧合成及其性能研究. 博士学位论文,哈尔滨工业大学,2010.
92 Li X C, Zheng L L, Qian Y H, et al. Journal of Materials Science & Technology, 2017, 33, 596.
93 Wang X H, Zhou Y C. Acta Materialia, 2002, 50, 3143.
94 Scabarozi T, Ganguly A, Hettinger J D, et al. Journal of Applied Phy-sics, 2008, 104, 703.
95 Barsoum M W, Salama I, El-Raghy T, et al. Metallurgical and Materials Transactions A, 2002, 33, 2775.
96 Feng W, Xie C, Cai S, et al. Electrochimica Acta, 2006, 51, 5606.
97 Dan L, Ying L, Liu X, et al. Journal of the European Ceramic Society, 2010, 30, 3227.
98 Li D. Electrochemical corrosion behaviors of Ti3AlC2 and Nb4AlC3. Master’s Thesis, Northeastern University, China, 2008(in Chinese).
李丹. Ti3AlC2及Nb4AlC3电化学腐蚀性能研究. 东北大学, 硕士学位论文, 2008.
99 Zhou W B, Mei B C, Zhu J Q, et al. JiangSu Ceramics, 2003, 36(3), 12(in Chinese).
周卫兵, 梅炳初, 朱教群, 等. 江苏陶瓷, 2003, 36(3), 12.
100 Liu J J, Li S L. Materials Science and Engineering of Powder Metallurgy, 2006, 11(2), 63(in Chinese).
刘继进, 李松林. 粉末冶金材料科学与工程, 2006, 11(2), 63.
101 Zhou W, Zhai H X,Huang Z Y, et al. Journal of the Chinese Ceramic Society, 2006, 34(5), 11(in Chinese).
周韡, 翟洪祥, 黄振莺,等. 硅酸盐学报, 2006, 34(5), 11.
[1] 朱咸勇, 丁振宇, 马国政, 朴钟宇, 付田力, 周雳, 于天阳, 郭伟玲, 王海斗. 三元MAX相层状陶瓷材料高温摩擦学性能研究进展[J]. 材料导报, 2022, 36(7): 21090166-11.
[2] 张子晨, 许涛, 武艺卿, 许岳磊, 夏兴川, 丁俭, 陈学广, 刘海峰, 韩星, 高玉刚, 刘永长. 泡沫铝三明治板材的研究现状[J]. 材料导报, 2021, 35(23): 23121-23130.
[3] 赵毅, 秦旻, 文凯琪, 梁乃兴, 王亚茹. 沥青路面超疏水抗凝冰材料研究进展[J]. 材料导报, 2021, 35(1): 1141-1153.
[4] 高胜东, 郭思琪, 王洪淼. 超声雾化制备高性能球形金属微粉的研究进展[J]. 材料导报, 2020, 34(23): 23131-23137.
[5] 张文华, 吕毓静, 刘鹏宇. EPS混凝土研究进展综述[J]. 材料导报, 2019, 33(13): 2214-2228.
[6] 邢小光, 许金余, 白二雷, 朱靖塞, 王谕贤. 纳米Fe2O3水泥基复合材料制备的响应曲面研究[J]. CLDB, 2018, 32(8): 1367-1372.
[7] 杨建明, 汤阳, 顾海, 刘永加, 黄大志, 陈劲松. 3D打印制备多孔结构的研究与应用现状[J]. 材料导报, 2018, 32(15): 2672-2683.
[8] 郑伟, 杨莉, 张培根, 陈坚, 田无边, 张亚梅, 孙正明. 二维材料MXene的储能性能与应用[J]. 材料导报, 2018, 32(15): 2513-2537.
[9] 郑伟, 孙正明, 张培根, 田无边, 王英, 张亚梅. 二维纳米材料MXene的研究进展*[J]. CLDB, 2017, 31(9): 1-14.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed