Please wait a minute...
材料导报  2020, Vol. 34 Issue (23): 23131-23137    https://doi.org/10.11896/cldb.19090123
  金属与金属基复合材料 |
超声雾化制备高性能球形金属微粉的研究进展
高胜东, 郭思琪, 王洪淼
哈尔滨工业大学机电工程学院,哈尔滨 150001
Research Progress on Producing Fine Spherical Metal Powder by Ultrasonic Atomization
GAO Shengdong, GUO Siqi, WANG Hongmiao
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
下载:  全 文 ( PDF ) ( 10786KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属球形微粉是增材制造、粉末冶金工业、粉末注射成型、表面喷涂工艺、三维焊接技术等制造领域的基础原材料,高性能的球形金属微粉具有球形度高、粒度分布窄的特点,使得其在应用于相关领域的制造技术时能够得到质量好、致密度高、尺度精度高、表面均匀且致密度好的金属零件,因此高性能球形金属微粉的制备已成为机械制造行业研究的热点。目前采用的制备方法主要有水雾化法、气雾化法、等离子雾化法和超声雾化法等,其中水雾化法制得的粉末球形度差,含氧量高;气雾化法制得的粉末易形成气孔,且雾化过程不可控;等离子雾化法制备粉末的收得率低;超声雾化制备方法具有适用范围广、设备和工艺简单、可控性高、成本低、制得粉末的球形度好、粒度分布窄、粉末收得率高的显著优势,具有很好的应用前景。本文综述了超声雾化制备高性能球形微细金属粉末的方法及其研究进展,分别从接触式超声制粉技术和非接触式超声制粉技术两方面介绍了国内外制粉技术的研究现状,其中国内的研究现状只针对接触式超声雾化技术,对于非接触式超声雾化技术的研究主要集中在国外;并对影响非接触式超声雾化制粉效果的几种因素进行了分析与展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高胜东
郭思琪
王洪淼
关键词:  金属球形微粉  制备技术  超声雾化技术  超声驻波    
Abstract: Spherical metal powder is a raw material used in additive manufacturing, powder metallurgy industry, metal powder injection molding technology and metal spraying and 3D welding technology. High-performance metal powder, applied in manufacturing, increases the quality, density, precision and strength of metal parts due to its good spherical morphology and narrow size distribution. Therefore, the preparation of high-performance spherical metal powder has become a popular research topic in mechanical manufacturing industry. Currently, the major preparation methods are water atomization, gas atomization, plasma rotating electrode process (PREP), plasma atomization (PA) and ultrasonic atomization. However, water atomization only leads to fine metal powder with poor sphericity and high oxygen content. Metal powder produced with gas atomization, susceptible to its unpredictable process, is likely to have pores. Preparation of fine spherical metal powder with particle size <45 μm by PREP requires higher rotational speed of the electrode, and the powder collection rate of PA is only 40%. Compared with other methods, ultrasonic atomization has wider range of application and higher controllability, and requires simpler equipment and process as well as lower cost. Moreover, the prepared powder has good spherical morphology and narrow size distribution, and thus a better application prospect. The paper summarizes the preparation method of fine spherical metal powder and its research progress on producing high-performance spherical metal powder by ultrasonic atomization. Contact ultrasonic atomization and ultrasonic standing wave atomization are introduced respectively to demonstrate the development of metal powder production around the world. Researches within the country mainly focus on contact ultrasonic atomization, while ultrasonic standing wave atomization proceeds chiefly in other countries. Several factors affecting the ultrasonic standing wave atomization techno-logy are analyzed and forecasted.
Key words:  spherical metal powder    preparation method    ultrasonic atomization    ultrasonic standing wave
               出版日期:  2020-12-10      发布日期:  2020-12-24
ZTFLH:  TF123  
基金资助: 国家自然科学基金委面上项目(51775144)
通讯作者:  sdgao@hit.edu.cn   
作者简介:  高胜东,哈尔滨工业大学机电工程学院副教授、硕士研究生导师。2006年11月博士毕业于哈尔滨工业大学机电工程学院,取得机械制造及其自动化学科博士学位,2007—2008年在德国不来梅大学进行研究工作。主要从事增材制造技术、熔体雾化技术及传热传质技术等方面的研究工作。
郭思琪,2018年6月毕业于哈尔滨工业大学,获得工学学士学位。现为哈尔滨工业大学机电工程学院硕士研究生,在高胜东副教授的指导下进行研究。目前主要研究领域为超声驻波作用下的熔体雾化。
引用本文:    
高胜东, 郭思琪, 王洪淼. 超声雾化制备高性能球形金属微粉的研究进展[J]. 材料导报, 2020, 34(23): 23131-23137.
GAO Shengdong, GUO Siqi, WANG Hongmiao. Research Progress on Producing Fine Spherical Metal Powder by Ultrasonic Atomization. Materials Reports, 2020, 34(23): 23131-23137.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090123  或          http://www.mater-rep.com/CN/Y2020/V34/I23/23131
1 Li Y, Ba F H, Xu H J. Physical Testing and Chemical Analysis (Part A: Physical Testing),2018,54(11),799(in Chinese).
李勇,巴发海,许鹤君.理化检验-物理分册,2018,54(11),799.
2 Yao N N, Peng X H. Sichuan Nonferrous Metals,2013(4),48(in Chinese).
姚妮娜,彭雄厚.四川有色金属,2013(4),48.
3 Zou H P, Li S K, Li B, et al. Comprehensive,2016(8),88(in Chinese).
邹海平,李上奎,李博,等.科技、管理及其他,2016(8),88.
4 Wang C C, Wang Y X, Rao X L, et al. In: Conference Thesis of The 11th CSM Steel Congress on Powder Injection Molding. Beijing,2017,pp.7(in Chinese).
王聪聪,王迎馨,饶晓雷,等.第十一界中国钢铁年会.北京,2017,pp.7.
5 Zhang X T, Zhang K C, Zhang D, et al. Powder Metallurgy Industry,2019,29(2),55(in Chinese).
张新涛,张科翠,张东,等.粉末冶金工业,2019,29(2),55.
6 Yang Q Z, Wei Y P, Gao P, et al. Materials Review,2016,30(S1),107(in Chinese).
杨全占,魏彦鹏,高鹏,等.材料导报,2016,30(专辑27),107.
7 Gao C F, Yu W Y, Zhu Q L, et al. Powder Metallurgy Industry,2017,27(5),53(in Chinese).
高超峰,余伟泳,朱权利,等.粉末冶金工业,2017,27(5),53.
8 Gao Z J, Zhou X L, Li J H, et al. Thermal Spray Technology,2018,10(3),1(in Chinese).
高正江,周香林,李景昊,等.热喷涂技术,2018,10(3),1.
9 Liang R, Dang X A, Zhao X J, et al. Nonferrous Metals,2008,60(1),36(in Chinese).
梁荣,党新安,赵小娟,等.有色金属,2008,60(1),36.
10 Zhang X Y, Li X B, Tan Z, et al. Chinese Journal of Lasers,2018,45(10),1002009-1(in Chinese).
张晓雅,李现兵,谈震,等.中国激光,2018,45(10),1002009-1.
11 Xu L H, Zhou X L, Li J H. Thermal Spray Technology,2018,10(2),1(in Chinese).
徐良辉,周香林,李景昊.热喷涂技术,2018,10(2),1.
12 Wang J J. Powder Metallurgy Industry,2016,26(5),1(in Chinese).
王建军.粉末冶金工业,2016,26(5),1.
13 Zhang Y H, Dong B B. Mechanical Research & Application,2016,29(2),203(in Chinese).
张艳红,董兵斌.机械研究与应用,2016,29(2),203.
14 Qin S S, Yu Y, Zeng G Y, et al. Powder Metallurgy Industry,2016,26(5),21(in Chinese).
覃思思,余勇,曾归余,等.粉末冶金工业,2016,26(5),21.
15 Zhang S G, Yang B C, Yang B, et al. Acta Metallurgica Sinica,2002,38(8),888(in Chinese).
张曙光,杨必成,杨博,等.金属学报,2002,38(8),888.
16 Zhu J, Zong W, Li Z, et al. Materials Research and Application,2016,10(3),201(in Chinese).
朱杰,宗伟,李志,等.材料研究与应用,2016,10(3),201.
17 Liu K J, Le C, Zhao F, et al. Journal of magnetic Materials and Devices,2018,49(6),10(in Chinese).
刘坤杰,乐晨,赵放,等.磁性材料及器件,2018,49(6),10.
18 Dai Y, Li L. Advanced Materials Industry,2016(8),57(in Chinese).
戴煜,李礼.新材料产业,2016(8),57.
19 Zeng G, Bai B L, Zhang P, et al. Titanium Industry Progress,2015,32(1),7(in Chinese).
曾光,白保良,张鹏,等.钛工业进展,2015,32(1),7.
20 Qu X H, Sheng Y W, Guo Z M, et al. Materials China,2011,30(7),50(in Chinese).
曲选辉,盛艳伟,郭志猛,等.中国材料进展,2011,30(7),50.
21 Dai Y, Li L. Advanced Materials Industry,2018(11),55(in Chinese).
戴煜,李礼.新材料产业,2018(11),55.
22 Zheng M Y. Advanced Materials Industry,2019(8),6(in Chinese).
郑明月.新材料产业,2019(8),6.
23 Yang F B, Xu J, Shi L K. Chinese Journal of Rare Metals,2005,29(5),785(in Chinese).
杨福宝,徐骏,石力开.稀有金属,2005,29(5),785.
24 Dang X A, Liu X H, Zhao X J. Nonferrous Metals,2009,61(2),49(in Chinese).
党新安,刘星辉,赵小娟.有色金属,2009,61(2),49.
25 Yang F B, Zhang F W, Xu J, et al. Materials Review,2005,19(8),87(in Chinese).
杨福宝,张富文,徐骏,等.材料导报,2005,19(8),87.
26 Hu S F, Wu S J, Su J, et al. Journal of Shanxi Normal University (Natural Science Edition),2010,38(1),27(in Chinese).
胡淑芳,吴胜举,苏婕,等.陕西师范大学学报(自然科学版),2010,38(1),27.
27 Zhang C, Zheng S Y. Journal of Water Resources & Water Engineering,2009,20(1),136(in Chinese).
张婵,郑爽英.水资源域水工程学报,2009,20(1),136.
28 Yasue K, Nishio T, Kosaka M. U. S. Patent, US4671906,1987.
29 Wisutmethangoon S, Plookphol T, Sungkhaphaitoon P. Powder Technology,2011,209,105.
30 Wu S J, Wang Z G, Ren J L, et al. Piezoelectrics & Acoustoo Ptics,2001,23(6),490(in Chinese).
吴胜举,王志刚,任金莲,等.压电与声光,2001,23(6),490.
31 Zhang H L, Li Z F, Zhang J, et al. Rare Metals Letters,2006,25(5),9(in Chinese).
张晗亮,李增峰,张健,等.稀有金属快报,2006,25(5),9.
32 Cao F G. Ultrasonic machining technology, Chemical Industry Press, China,2005(in Chinese).
曹凤国.超声加工技术,化学工业出版社,2005.
33 Ruthardt Rolf. German patent, No.3150221,1983.
34 Kazuo Yasue, Toshiyuki Nishio, Mineo Kosaka, et al. U. S. patent, US4671906,1987.
35 Ryoichi Isago, Kenta Tokumitsu, Daisuke Koyama, et al. In: Procee-dings of Symposium on Ultrasonic Electronics. Tokyo,2011,pp.517.
36 Takuya Asami, Ryo Yakou, Takashi Ono, et al. Journal of Mechanical Engineering and Automation,2016,6,30.
37 Ishii Toshio, Oishi Hitioshi, Furuya Shigeru. Japanese patent, No.3036205,1991.
38 Lynn J G, Zwemer R L, et al. Journal of Physics A-Mathematical and General,1942,26,179.
39 Wang Z W, Wang B F, Cao Y, et al. Machine Tool & Hydraulics,2018,46(18),18.
40 Song K T, Gao J M. Journal of Agricultural Mechanization Research,2013(4),63(in Chinese).
宋克涛,高建民.农机化研究,2013(4),63.
41 Dong H J, Yu Z, Fan J Z. Journal of University (Engineering and Technology Edition),2018,48(4),1991(in Chinese).
董惠娟,于震,樊继壮.吉林大学学报,2018,48(4),1991.
42 Lee C P, Anilkumar A V, Wang T G. Physics of Fluids,1994,6(11),3554.
43 Nils Lessmann. Numerical and experimental inveatigation of the disintegration of polymer melts in an ultrasonic standing wave atomizer. Ph.D. Thesis, University of Paderborn, Germany,2004.
44 Reipschläger O, Bothe D, Warnecke H J, et al. ILASS-Europe,2002,72,9.
45 Lierke E G, Klaus Luhmann, Sigurd Jonsson, et al. U. S. patent, US4981425,1991.
46 Olaf Andersen, Stephan Hansmann, Klaus Bauckhage. Particle & Particle Systems Characterization,1996,13,217.
47 Bauckhage K. International Journal of Fluid Mechanics Research,1997,24,556.
48 Fritsching U, Bauckhage K. Ultrasonics,1997,25,151.
49 Olaf Andersen, Schreckenberg P, Bauckhage K, Tin Industry,1998,26(2),1.
50 Bauckhage K, Schreckerberg P, Vetters H. German patent,39178A1,1996.
51 Bauckhage K, Schreckerberg K. HTM,1994,49(5),331.
52 Gert Stauch, Bjoern Mattias, Uwe Goerges, et al. U. S. patent, US7472850,2009.
53 Uwe Gorges, Gert Stauch, Bjorn Matthias, et al. U. S. patent, US0005766,2006.
54 Arisa Endo, Miduki Yanagimoto, Takuya Asami, et al. Japanese Journal of Applied Physics,2015,54(13),31.
55 Claas Knoop, Udo Fritsching. Elsevier,2013,54,763.
56 Claas Knoop, Zinaida Todorova, Jurgen Tomas, et al. Powder Technology,2016,291,214.
57 Claas Knoop, Udo Fritsching. American Institute of Physics,2013,1558,1115.
58 Claas Knoop, Udo Fritsching. Ultrasonics,2014,54,763.
[1] 张文华, 吕毓静, 刘鹏宇. EPS混凝土研究进展综述[J]. 材料导报, 2019, 33(13): 2214-2228.
[2] 邢小光, 许金余, 白二雷, 朱靖塞, 王谕贤. 纳米Fe2O3水泥基复合材料制备的响应曲面研究[J]. CLDB, 2018, 32(8): 1367-1372.
[3] 杨建明, 汤阳, 顾海, 刘永加, 黄大志, 陈劲松. 3D打印制备多孔结构的研究与应用现状[J]. 材料导报, 2018, 32(15): 2672-2683.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed