Please wait a minute...
CLDB  2018, Vol. 32 Issue (8): 1367-1372    https://doi.org/10.11896/j.issn.1005-023X.2018.08.030
  计算模拟 |
纳米Fe2O3水泥基复合材料制备的响应曲面研究
邢小光1, 许金余1,2, 白二雷1, 朱靖塞1, 王谕贤1
1 空军工程大学机场建筑工程系,西安 710038;
2 西北工业大学力学与土木建筑学院,西安 710072
Response Surface Research of the Preparation of Nano-Fe2O3 Cement-based Composite
XING Xiaoguang1, XU Jinyu1,2, BAI Erlei1, ZHU Jingsai1, WANG Yuxian1
1 Department of Airfield and Building Engineering, Air Force Engineering University, Xi’an 710038;
2 College of Mechanics and Civil Architecture, Northwest Polytechnic University, Xi’an 710072
下载:  全 文 ( PDF ) ( 1392KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 配制三种常用高效减水剂溶液,观察纳米Fe2O3在三种溶液中的分散效果;基于响应曲面正交旋转组合设计,并考虑纳米Fe2O3掺量(Nano-Fe2O3 content, NFC)、聚羧酸减水剂母液掺量(Polycarboxylate superplasticizer content, PSC)、水胶比(Water-binder rational, WBR)三因素,研究水泥硬化浆体的配比参数与强度间的响应曲面,分析各参数对强度的影响规律。结果表明:纳米Fe2O3在聚羧酸高性能减水剂母液溶液中分散效果最好;当配比参数 NFC=0.027、PSC=0.017 5、WBR=0.28时,水泥硬化浆体具有较高的强度;从统计学与实践角度来看,响应曲面方程具有较高的可靠性和精度;抗压强度随PSC的增大先增大后减小,随WBR的增大而减小,随NFC的增大而增大;最佳数值附近存在最适宜配方和掺量,使水泥基复合材料具有较好的强度和施工性;响应曲面法(Response surface methodology, RSM)可广泛应用于新型水泥基复合材料的研发领域,发展前景广阔。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邢小光
许金余
白二雷
朱靖塞
王谕贤
关键词:  纳米Fe2O3  水泥基复合材料  响应曲面分析法(RSM)  制备技术  分散剂    
Abstract: To investigate the dispersing effect of nano-Fe2O3 in three kinds of commonly used superplasticizer solutions, these solutions were prepared. The effects of design parameters including nano-Fe2O3 content(NFC), polycarboxylate superplasticizer content(PSC) and the water-binder ratio(WBR) on compressive strength were evaluated based on the response surface orthogonal rotation combination design and using. Sequentially, the response surface between cement hardened paste design parameters and compressive strength was considered. The test result manifested that the dispersion effect of nano-Fe2O3 in polycarboxylate superplasticizer liquor solution was best. When NFC is 0.027, PSC is 0.017 5, WBR is 0.28, cement hardened paste can show favorable construction condition. The reliability and accuracy of response surface of nano-Fe2O3 cement-based composite can be verified in terms of statistics and application. Compressive strength increased up and then decreased with the increasing of PSC, decreased with the increa-sing of WBR, and increased with the increasing of NFC that suggested there was an optimum value generating the cement-based composite constructed favorable with superior compressive strength. RSM had a promising prospect to be widely used in the field of research and development on the new cement-based composite.
Key words:  nano-Fe2O3    cement-based composite    response surface methodology (RSM)    preparation technology    dispersing agent
               出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TU528.572  
作者简介:  邢小光:男,1993年生,硕士,助理工程师,研究方向为结构工程与防护工程 E-mail:xingxiaoguang@tju.edu.cn
引用本文:    
邢小光, 许金余, 白二雷, 朱靖塞, 王谕贤. 纳米Fe2O3水泥基复合材料制备的响应曲面研究[J]. CLDB, 2018, 32(8): 1367-1372.
XING Xiaoguang, XU Jinyu, BAI Erlei, ZHU Jingsai, WANG Yuxian. Response Surface Research of the Preparation of Nano-Fe2O3 Cement-based Composite. Materials Reports, 2018, 32(8): 1367-1372.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.030  或          http://www.mater-rep.com/CN/Y2018/V32/I8/1367
1 Mondal P, Shah S P, Marks L D, et al. Comparative study of the effects of microsilica and nanosilica in concrete[J].Transportation Research Record,2010,13(2141):6.
2 Björnström J, Martinelli A, Matic A, et al. Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement[J].Chemical Physics Letters,2004,392(1):242.
3 Du Y J, Han S J, Yao R F, et al. Experimental study on improving impermeability and frost resistance of concrete by nano-powder[J].Journal of Northwest Agriculture and Forestry University(Natural Science Edition),2004,32(7):107(in Chinese).
杜应吉,韩苏建,姚汝方,等.应用纳米微粉提高混凝土抗渗抗冻性能的试验研究[J].西北农林科技大学学报(自然科学版),2004,32(7):107.
4 He X, Shi X. Chloride permeability and microstructure of portland cement mortars incorporating nanomaterials[J].Transportation Research Record Journal of the Transportation Research Board,2008,2070(2070):13.
5 Qing Y E, Zhang Z N, Kong D Y, et al. Comparison of properties of high strength concrete with nano-SiO2 and silica fume added[J].Journal of Building Materials,2003,6(4):381.
6 Morsy M S, Alsayed S H, Aqel M. Effect of nano-clay on mechanical properties and microstructure of ordinary Portland cement mortar[J].International Journal of Civil & Environmental Engineering,2010,10:21.
7 Li H, Ou J P. Smart concrete and structures[J].Engineering Mechanics,2007,24(S2):45(in Chinese).
李惠,欧进萍.智能混凝土与结构[J].工程力学,2007,24(s2):45.
8 Wang W J, Guo C S,Zhu X R, et al. Study on modification of cement paste by nano silica fume[J].New Building Materials,2008,35(6):53(in Chinese).
王文军,郭昌生,朱向荣,等.纳米硅粉对水泥硬化浆体的改性研究[J].新型建筑材料,2008,35(6):53.
9 Li H, Xiao H G, Yuan J, et al. Microstructure of cement mortar with nano-particles[J].Composites Part B: Engineering,2004,35(2):185.
10 Zhang M H. Life-cycle performance of nano-pavement concrete[D].Harbin:Harbin Institute of Technology,2007(in Chinese).
张茂花.纳米路面混凝土的全寿命性能[D].哈尔滨:哈尔滨工业大学,2007.
11 Dong J M, Ma M B. Study of nanometer SiO2 strengthens the cement base material performance on different dispersing method[J].Concrete,2011(4):95(in Chinese).
董健苗,马铭彬.分散方法对纳米SiO2增强水泥基材料性能的影响[J].混凝土,2011(4):95.
12 Cui H Z, Yang J M, Lin J Z. Research progress on carbon nanotubes dispersion techniques and CNTs-reinforced cement-based materials[J].Materials Review A:Review Papers,2016,30(2):91(in Chinese).
崔宏志,杨嘉明,林炅增.碳纳米管分散技术及碳纳米管-水泥基复合材料研究进展[J].材料导报:综述篇,2016,30(2):91.
13 Naganathan S, Singh C S J, Shen Y W, et al. Nanotechnology in ci-vil engineering—A review[J].Advanced Materials Research,2014,935:151.
14 Myers R H, Montgomery D C. Response surface methodology[J].Wiley Interdisciplinary Reviews Computational Statistics,2010,2(2):128.
15 Contreras M D M, Hernández-Ledesma B, Amigo L, et al. Production of antioxidant hydrolyzates from a whey protein concentrate with thermolysin: Optimization by response surface methodology[J].LWT - Food Science and Technology,2011,44(1):9.
16 Zhang E, Chang J, Zhang L, et al. Optimization of thiourea-assisted silver leaching from sintering dust by response surface methodology[J].Materials Review A: Review Papers,2016,30(2):130(in Chinese).
张佴栋,常军,张利波,等.响应曲面法优化硫脲浸出烧结灰中银的工艺研究[J].材料导报:综述篇,2016,30(2):130.
17 Shi H X, Yu Z L, He X C, et al. Optimization of cold isostatic pressing process of isotropic graphite by response surface methodo-logy[J].Materials Review B:Research Papers,2015,19(2):147(in Chinese).
施辉献,于站良,和晓才,等.响应曲面法优化各向同性石墨的冷等静压成型工艺[J].材料导报:研究篇,2015,29(2):147.
18 Senn S. Encyclopedia of biopharmaceutical statistics[J].Technometrics,2003,43:115.
[1] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[2] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[3] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[4] 李晓琴, 杨潇, 丁祖德, 申林方, 杜茜. 基于UDEM-ACE方法的ECC配合比优化设计[J]. 材料导报, 2019, 33(14): 2354-2361.
[5] 张文华, 吕毓静, 刘鹏宇. EPS混凝土研究进展综述[J]. 材料导报, 2019, 33(13): 2214-2228.
[6] 司伟, 丁超, 潘伟. 聚丙烯酸铵和柠檬酸铵分散剂对钇铝石榴石陶瓷透光率的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1209-1212.
[7] 江世永, 龚宏伟, 姚未来, 陶帅, 蔡涛. ECC材料力学性能与本构关系研究进展[J]. 材料导报, 2018, 32(23): 4192-4204.
[8] 高瑞军, 姚燕, 吴浩, 王玲. 纳米复合粉体分散剂的制备及其分散性能[J]. 材料导报, 2018, 32(22): 3868-3874.
[9] 王义超, 侯梦君, 余江滔, 徐世烺, 俞可权, 张志刚. 聚乙烯纤维制备超高延性水泥基复合材料的试验研究[J]. 材料导报, 2018, 32(20): 3535-3540.
[10] 祝和意, 张少峰. PVA纤维体积率对PVA-ECC力学性能的影响[J]. 材料导报, 2018, 32(18): 3266-3270.
[11] 杨建明, 汤阳, 顾海, 刘永加, 黄大志, 陈劲松. 3D打印制备多孔结构的研究与应用现状[J]. 材料导报, 2018, 32(15): 2672-2683.
[12] 朱平,邓广辉,邵旭东. 碳纳米管在水泥基复合材料中的分散方法研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 149-158.
[13] 武文红, 牛恒茂, 赵燕茹, 邢永明. 基于图像处理的纤维分布与取向分布对水泥基材料弯曲性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 140-146.
[14] 吕生华,罗潇倩,张 佳,高党国,孙 立,胡浩岩. 氧化石墨烯调控水泥基材料形成大规模规整结构及其性能表征[J]. 《材料导报》期刊社, 2017, 31(24): 10-14.
[15] 徐亦冬, 曾鞠庆, 陈伟, 毛江鸿, 沈建生, 胡丹烨. 氧化石墨烯增强水泥基复合材料的研究现状及展望*[J]. 《材料导报》期刊社, 2017, 31(23): 150-155.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed