Please wait a minute...
材料导报  2021, Vol. 35 Issue (2): 2019-2025    https://doi.org/10.11896/cldb.20020114
  无机非金属及其复合材料 |
空心球羟基磷灰石等离子喷涂粉体的制备
张智1,2, 马幼平1, 王富强2, 周子凌3, 魏花丽2, 赵丽娜4
1 西安建筑科技大学冶金工程学院,西安 710055;
2 西安航天复合材料研究所,西安 710025;
3 北海道大学,北海道 079-1143;
4 西安交通大学金属强度国家重点实验室,西安 710049
Preparation of Hollow Spherical Hydroxyapatite Powder for Plasma Spray
ZHANG Zhi1,2, MA Youping1, WANG Fuqiang2, ZHOU Ziling3, WEI Huali2, ZHAO Li’na4
1 School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;
2 Xi'an Aerospace Composites Research Institute, Xi'an 710025, China;
3 Hokkaido University, Hokkaido 079-1143, Japan;
4 State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
下载:  全 文 ( PDF ) ( 4481KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 羟基磷灰石等离子喷涂粉体被广泛用于等离子喷涂方法制备的骨及牙等医用种植体表面的生物活性涂层产品中,研制高性能的羟基磷灰石喷涂粉体对提高等离子喷涂羟基磷灰石生物活性涂层的使用性能有着重要意义。本研究采用水热、喷雾造粒、等离子球化及空心化等方法制备出一种新型空心球羟基磷灰石喷涂粉体。扫描电镜照片显示该粉体外观主要呈规则球形,平均粒径约为80.4 μm,内部为空心结构,空心部分呈球状位于粉体中心,其平均壳壁厚度约为13.3 μm。另外,本工作探讨了团聚结构羟基磷灰石粉体在等离子焰流中的空心化过程,认为粉体的初始孔隙率、粉体在焰流中的熔化程度、熔滴内部的气密性是影响空心化效果的主要因素。最后,通过等离子喷涂方法制备了团聚结构和空心球结构两种羟基磷灰石粉体涂层,结果表明:空心球结构羟基磷灰石粉体涂层的致密性及结合强度均优于团聚结构羟基磷灰石粉体涂层。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
ZHANG Zhi
MA Youping
WANG Fuqiang
ZHOU Ziling
WEI Huali
ZHAO Li’na
关键词:  空心球粉体  羟基磷灰石  等离子喷涂  等离子球化及空心化  涂层    
Abstract: Hydroxyapatite powder for plasma spray has been used widely in the plasma-sprayed bioactive coatings of orthopaedic and dental implants. It’s important to develop the high-quality hydroxyapatite powder for plasma spray in order to improve the performance of the plasma-sprayed bioactive hydroxyapatite coatings. In this study, a new hollow spherical hydroxyapatite powder was prepared by hydrothermal treatment, spray drying, plasma spheroidization and hollowing process. Scanning electron micrographs of the hollow spherical hydroxyapatite powder showed that it exhibited a spherical morphology and a hollow structure with a shell enclosing a central cavity. The mean size of the hollow spherical hydroxyapatite powder is about 80.4 μm, and the mean shell thickness is about 13.3 μm. Furthermore, the hollowing process of the agglomerated hydroxyapatite powder in plasma flame was studied. Results showed that the initial porosity of the agglomerated hydroxyapatite powder and powder melting degree in plasma flame, and the air tightness of the droplet were main factors determining the hollowing effect. Furthermore, the coa-tings obtained using the agglomerated hydroxyapatite powder and hollow spherical hydroxyapatite powder as feedstock were prepared by a plasma spraying method. Results showed that the coating prepared from the hollow hydroxyapatite powder was denser and had higher bond strength than the coating prepared from the agglomerated hydroxyapatite powder.
Key words:  hollow spherical powder    hydroxyapatite    plasma spray    plasma spheroidization and hollowing process    coating
               出版日期:  2021-01-25      发布日期:  2021-01-28
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(U1837201)
通讯作者:  zzhorse@126.com   
作者简介:  张智,毕业于航天动力技术研究院,材料学硕士学位,现为西安建筑科技大学冶金工程学院博士研究生,主要从事陶瓷粉体材料和表面改性技术的研究。
马幼平,西安建筑科技大学教授,毕业于西安交通大学,材料学博士学位,主要从事新型粉体材料及表面改性技术的研究。在国内外重要期刊发表学术论文50余篇,主持和参与国家、省部科技项目10余项。
引用本文:    
张智, 马幼平, 周子凌, 魏花丽, 赵丽娜. 空心球羟基磷灰石等离子喷涂粉体的制备[J]. 材料导报, 2021, 35(2): 2019-2025.
ZHANG Zhi, MA Youping, WANG Fuqiang, ZHOU Ziling, WEI Huali, ZHAO Li’na. Preparation of Hollow Spherical Hydroxyapatite Powder for Plasma Spray. Materials Reports, 2021, 35(2): 2019-2025.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020114  或          http://www.mater-rep.com/CN/Y2021/V35/I2/2019
1 Pillai R S, Frasnelli M, Sglavo V M.Ceramics International, 2018, 44(2), 1328.
2 Kweh S W K, Khor K A, Cheang P.Biomaterials, 2002, 23(3), 775.
3 Surmenev R A, Surmeneva M A, Ivanova A A.Ceramics International, 2014, 10(2), 557.
4 Ripamonti U, Roden L C, Renton L F.Biomaterials, 2012, 33(15), 3813.
5 Heimann R B.Journal of Thermal Spray Technology, 2016, 25(5), 827.
6 Tong W, Chen J, Li X, et al.Biomaterials, 1996, 17(15), 1507.
7 Yang Y C, Chan E, Hwang B H, et al.Biomaterials, 2000, 21(13), 1327.
8 Kweh S W K, Cheang P.Journal of Materials Processing Technology, 1997, 63(1-3), 271.
9 Guipont V, Espanol M, Borit F, et al.Materials Science & Engineering A, 2002, 325(1-2), 9.
10 Sun L, Berndt C C, Grey C P.Materials Science & Engineering A, Structural Materials: Properties, Microstructure and Processing, 2003, 360(1/2), 70.
11 Li F, Li Y H, Xu K W, et al.Rare Metal Materials and Engineering, 2014, 43(12), 3183.
12 Kumar A, Gu Sai, Tabbara H, et al.Surface and Coatings Technology, 2013, 220, 164.
13 Tsui Y C, Doyle C, Clyne T W.Biomaterials, 1998, 19(22), 2015.
14 Zheng X B, Huang M H, Ding C X.Biomaterials, 2000, 21(8), 841.
15 Singh A, Singh G, Chawla V.Journal of the Mechanical Behavior of Biomedical Materials, 2018, 79, 273.
16 Solonenko O P, Gulyaev I P, Smirnov A V.Journal of Thermal Science and Technology, 2011, 6(2), 219.
17 Lu C, Fan J M, Zhao P C, et al.Powder Technology, 2014, 266, 210.
18 Kamnis S, Gu S, Vardavoulias M.Journal of Thermal Spray Technology, 2011, 20(3), 630.
19 Streibl T, Vaidya A.Plasma Chemistry and Plasma Processing, 2006, 26(1), 73.
20 Kweh S W K, Khor K A, Cheang P.Biomaterials, 2000, 21(12), 1223.
21 Gulyaev I P, Solonenko O P.Experiments in Fluids, 2013, 54, 1432.
22 Zhao L N, Zhang Z, Duan Y G, et al.Coatings, 2018, 8(7), 245.
23 Zhang H B. Study on controlled synthesis of hydroxyapatite crystal/particle under hydrothermal condition. Doctor's Thesis, Central South University, China, 2011(in Chinese).
张海斌. 羟基磷灰石晶粒/粒子的水热控制合成. 博士学位论文, 中南大学,2011.
24 Liu J B, Ye X Y, Hao W, et al.Ceramics International, 2003, 29(6), 629.
25 Zhang G D, Chen J D, Yang S, et al.Materials Letters, 2011, 65(3), 572.
26 Cao Y. The study of the stability, bioactivity and mechanical behavior of apatite coating. Doctor's Thesis, Sichuan University, China, 2005(in Chinese).
曹阳. 磷酸钙涂层植入体表面稳定性、生物活性及界面结合强度的研究. 博士学位论文, 四川大学,2005.
27 Cao Y, Weng J, Chen J Y, et al.Biomaterials, 1996, 17(4), 419.
28 Gulyaev I P.Ceramics International, 2015, 41(1), 101.
29 Solonenko O P, Gulyaev I P, Smirnov A V.Technical Physics Letters, 2008, 34(12), 1050.
30 Gulyaev I P.Journal of Physics: Conference Series, 2013, 441, 012033.
31 Ettouil F B, Mazhorova O, Pateyron B, et al.Surface and Coatings Technology, 2008, 202(18), 449.
[1] 梁秀兵, 周志丹, 张志彬, 程江波, 陈永雄. 铝基非晶材料研究与再制造应用前景[J]. 材料导报, 2021, 35(1): 1003-1010.
[2] 钱国余, 王志, 孙峙, 刘春伟, 严鹏程. 废旧航空铝材涂层的热分解与成分调控再生[J]. 材料导报, 2021, 35(1): 1023-1029.
[3] 申欣, 孟昭旭, 廉鹤. 纳米羟基磷灰石复合材料在癌症治疗中的应用进展[J]. 材料导报, 2020, 34(Z2): 88-90.
[4] 范燕, 徐昕荣, 石志峰, 刘佳, 李冰, 徐蒙蒙. 生物医用金属材料表面改性的研究进展[J]. 材料导报, 2020, 34(Z2): 327-329.
[5] 曾尚武, 郭夏溦, 张磊, 屈帅, 常建伟, 王舒然, 徐德录, 李雅泊. 铁塔用VCI双金属涂层的制备及性能研究[J]. 材料导报, 2020, 34(Z2): 423-428.
[6] 梁广, 朱胜, 王文宇, 王晓明, 韩国峰, 任智强. 铝合金腐蚀防护技术研究现状及发展趋势[J]. 材料导报, 2020, 34(Z2): 429-436.
[7] 秦建, 龙伟民, 路全彬, 李胜男, 黄俊兰. 金刚石/NiCrBSi钎涂接头组织与耐磨性能分析[J]. 材料导报, 2020, 34(Z2): 457-461.
[8] 齐美丽, 梅凤策, 黄浩, 崔凤坤. 一步法合成锶离子掺杂羟基磷灰石多孔微球[J]. 材料导报, 2020, 34(Z1): 63-65.
[9] 吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
[10] 程海松, 刘岗, 雷刚, 谭俊, 陈春彦, 梁勇, 苏岳亮, 吴开颜, 杜永斌. 燃煤锅炉受热面高温腐蚀防护涂层技术研究进展[J]. 材料导报, 2020, 34(Z1): 433-435.
[11] 钏定泽, 颜廷亭, 刘金坤, 刘继涛, 陈希亮, 陈庆华. 羟基磷灰石晶体仿生阵列的制备研究进展[J]. 材料导报, 2020, 34(9): 9069-9074.
[12] 刘国熠, 赵晓明, 刘元军, 谌玉红. 不同隔热填料对双层涂层柔性复合材料热防护性能的影响[J]. 材料导报, 2020, 34(8): 8194-8199.
[13] 张梦清, 乔玉林, 吉小超, 周克兵, 张伟, 于鹤龙. 线圈扫描速度对感应熔覆NiCrBSi涂层组织与性能的影响[J]. 材料导报, 2020, 34(6): 6120-6125.
[14] 袁晓静, 关宁, 侯根良, 陈小虎, 马爽. 高温固体自润滑涂层的制备及可靠性的研究进展[J]. 材料导报, 2020, 34(5): 5061-5067.
[15] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed