Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 21060129-12    https://doi.org/10.11896/cldb.21060129
  无机非金属及其复合材料 |
基于光伏发电的道路能量收集技术研究进展
胡恒武, 查旭东*, 吕瑞东, 邱梦萱, 钟海阔, 李正, 潘勤学
长沙理工大学交通运输工程学院,长沙 410114
Recent Advances of Energy Harvesting Technologies in Road Based on Photovoltaic Power Generation
HU Hengwu, ZHA Xudong*, LYU Ruidong, QIU Mengxuan, ZHONG Haikuo, LI Zheng, PAN Qinxue
School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China
下载:  全 文 ( PDF ) ( 7904KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 道路能量收集是在不消耗额外自然资源的情况下实现发电的一种极具发展前景的可再生能源供应技术,其可以将原本会被耗散和浪费的路域能量进行收集并转化为可用的电能,已然成为当今道路、材料、能源和环境等领域的研究热点。其中,光伏发电技术因绿色高效、成本低而应用广泛,故开发基于光伏发电的道路能量收集技术可有效促进智慧交通的发展及实现“碳达峰”和“碳中和”的目标。
目前,光伏发电技术及其光电转换效率日益提高,但在工程实际应用中,光伏系统的输出功率易受各种环境因素的影响而有待提升。道路工程中光伏发电技术的研究与应用主要集中在路侧、路面及其上方空间,应用区域包括声屏障、边坡、路面、廊道及停车棚等。道路光伏发电技术实现了光伏发电系统与道路工程有机结合的一体化设计,在满足道路和发电功能要求的同时还具有降噪、护坡、承载和遮阳等功能。此外,“光伏+交通”的应用模式不仅能提升交通基础设施的智能化,优化交通能源结构,还可促进公路交通运输的节能减排,蕴藏着巨大的发展潜力和机遇。
本文归纳分析了太阳能光伏电池的特点、系统组成及其发电效率的影响因素,定义了基于光伏发电的道路能量收集技术的概念,明确了其应用范围,总结了光伏发电技术在道路工程领域中的最新研究与应用成果及发展现状,据此探讨其存在的问题并展望未来发展趋势,以期促进道路光伏发电技术的科学发展与应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡恒武
查旭东
吕瑞东
邱梦萱
钟海阔
李正
潘勤学
关键词:  道路工程  道路能量收集  智慧交通  道路光伏(RMPV)  光伏发电  光伏声屏障(PVNB)  光伏路面    
Abstract: Road energy harvesting is a promising renewable energy supply technology that can generate electricity without consuming additional natural resources.It can collect and convert the energy in road area that would otherwise be dissipated and wasted into the usable electrical energy.The technology has become a research hotspot in the fields of road, material, energy and environment. And photovoltaic power generation technology is widely used because of its green-high efficiency and low cost. Therefore, the development of energy harvesting technologies in road based on photovoltaic power generation can effectively promote the progress of smart transportation and achieve the goal of ‘carbon peak’ and ‘carbon neutrality’.
At present, the photovoltaic power generation technology and its photoelectric conversion efficiency are increasing day by day, but the output power of its photovoltaic system is vulnerable to various environmental factors and needs to be improved in the practical application of enginee-ring. The research and application of photovoltaic power generation technology in road engineering mainly focus on roadside, pavement and space above it, and the corresponding application area includes noise barrier,road slope, pavement, road canopy, parking canopy, etc.Road photovoltaic power generation technology realizes the integrated design of organic combination of photovoltaic power generation system and road engineering,which also has the functions of noise reduction, slope protection, load bearing, sun shading and others while meeting the function requirements of road and power generation.In addition, the application mode of ‘photovoltaic+transportation’ can not only improve the intelligence of transportation infrastructure and optimize the transportation energy structure, but also promote the energy conservation and emission reduction of road transportation, which contains huge development potential and opportunities.
This review summarizes and analyzes the characteristics of solar photovoltaic cells, system composition and the power generation efficiency of impact factors, defines the concept of energy collection technology in road based on photovoltaic generation, clarifies its application scope, and summarizes the latest research and application results and development status of photovoltaic power generation technology in the field of roads.Accordingly, the problems and future development trends are discussed in order to promote the scientific development and application of road photovoltaic power generation technology.
Key words:  road engineering    road energy harvesting    intelligent transportation    roads mounted photovoltaic (RMPV)    photovoltaic power generation    photovoltaic noise barrier (PVNB)    solar pavement
发布日期:  2022-10-26
ZTFLH:  U416  
基金资助: 国家自然科学基金(51878077);湖南省自然科学基金(2020JJ5579);交通运输标准(定额)项目(2019-17-077);湖南省研究生科研创新项目(CX20190645;CX20220863)
通讯作者:  *1756023135@qq.com   
作者简介:  胡恒武,2016年6月毕业于武汉工程大学,获工学学士学位。现为长沙理工大学交通运输工程学院博士研究生,在查旭东教授的指导下进行研究。目前主要研究领域为太阳能光伏发电路面。
查旭东,工学博士,现任长沙理工大学交通运输工程学院二级教授、博士研究生导师。主要从事道路与铁道工程的教学、科研和技术服务工作,主要研究方向包括耐久性路面结构设计理论及新技术,道路工程新材料、测试及施工控制技术,特殊路基稳定与加固新技术。
引用本文:    
胡恒武, 查旭东, 吕瑞东, 邱梦萱, 钟海阔, 李正, 潘勤学. 基于光伏发电的道路能量收集技术研究进展[J]. 材料导报, 2022, 36(20): 21060129-12.
HU Hengwu, ZHA Xudong, LYU Ruidong, QIU Mengxuan, ZHONG Haikuo, LI Zheng, PAN Qinxue. Recent Advances of Energy Harvesting Technologies in Road Based on Photovoltaic Power Generation. Materials Reports, 2022, 36(20): 21060129-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060129  或          http://www.mater-rep.com/CN/Y2022/V36/I20/21060129
1 Yu H Y, Ma T, Wang D W, et al. China Journal of Highway and Transport, 2020, 33(10), 1(in Chinese).
于华洋, 马涛, 王大为, 等. 中国公路学报, 2020, 33(10), 1.
2 Zheng Z D, Liu H, Li Y D, et al. China Journal of Highway and Transport, 2019, 32(5), 132(in Chinese).
郑泽东, 刘昊, 李永东, 等. 中国公路学报, 2019, 32(5), 132.
3 Wang L B, Wang H X, Zhao Q, et al. China Journal of Highway and Transport, 2019, 32(4), 50(in Chinese).
WANG Linbing, 王含笑, 赵千, 等. 中国公路学报, 2019, 32(4), 50.
4 Gholikhani M, Roshani H, Dessouky S, et al. Applied Energy, 2020, 261, 114388.
5 Pan H Y, Qi L F, Zhang Z T, et al. Applied Energy, 2021, 286, 116518.
6 Pei J Z. China Journal of Highway and Transport, 2018, 31(11), 1(in Chinese).
裴建中. 中国公路学报, 2018, 31(11), 1.
7 Pei J Z, Guo F C, Zhang J P, et al. Journal of Cleaner Production, 2021, 288, 125338.
8 Comprehensive Planning Division of Ministry of Transport of China, (2021-05-19) [2021-06-17]. https://xxgk.mot.gov.cn/2020/jigou/zhghs/202105/t20210517_3593412.html(in Chinese).
交通运输部综合规划司.(2021-05-19) [2021-06-17]. https://xxgk.mot.gov.cn/2020/jigou/zhghs/202105/t20210517_3593412.html.
9 Hu H W, Zha X D, Cen Y Q, et al. Journal of Chang’an University (Natural Science Edition), 2020, 40(1), 16(in Chinese).
胡恒武, 查旭东, 岑晏青, 等. 长安大学学报(自然科学版), 2020, 40(1), 16.
10 Sha A M, Jiang W, Wang W T, et al. Chinese Science Bulletin, 2020, 65(30), 3259(in Chinese).
沙爱民, 蒋玮, 王文通, 等. 科学通报, 2020, 65(30), 3259.
11 Toh C K, Sanguesa J A, Cano J C, et al. Proceedings of the Royal Society A, 2020, 476, 20190439.
12 Zhao H D, Zhu X Y, Tu H Z, et al. Journal of Tongji University (Natural Science), 2017, 45(8), 37(in Chinese).
赵鸿铎, 朱兴一, 涂辉招, 等. 同济大学学报(自然科学版), 2017, 45(8), 37.
13 Li Y W, Chen S, Wang C H, et al. Materials Reports A:Review Papers,2015, 29(4), 100(in Chinese).
李彦伟, 陈森, 王朝辉, 等. 材料导报:综述篇,2015, 29(4), 100.
14 Sun W J, Lu G Y, Cheng Y, et al. Advances in Materials Science and Engineering, 2018, 2018, 9760464.
15 Wang H, Jasim A, Chen X D. Applied Energy, 2018, 212, 1083.
16 Venugopal P, Shekhar A, Visser E, et al. Applied Energy, 2018, 212, 1226.
17 Pei J Z, Zhou B C, Lyu L. Applied Energy, 2019, 241, 174.
18 Ahmad S, Abdul M M, Farooqi M A. International Journal of Energy Research, 2019, 43(6), 1974.
19 Zabihi N, Saafi M. Sustainability, 2020, 12(17), 6738.
20 Wu S P, Chen M Y, Han J. Journal of Highway and Transportation Research and Development, 2010, 27(3), 17(in Chinese).
吴少鹏,陈明宇,韩君. 公路交通科技,2010,27(3),17.
21 Jiang W, Xiao J, Yuan D, et al. Energy and Buildings, 2018, 169, 39.
22 Huang R B, Niu Y L, Zhao H D, et al. China Journal of Highway and Transport, 2012, 25(6), 1(in Chinese).
黄如宝,牛衍亮,赵鸿铎,等. 中国公路学报,2012,25(6),1.
23 Gholikhani M, Shirazi S Y B, Mabrouk G M, et al. Energy Conversion and Management,2021, 230, 113804.
24 Rabaia M K H, Abdelkareem M A, Sated E T, et al. Science of the Total Environment, 2021, 754, 141989.
25 Jia L M, Ma J, Cheng P, et al. CSEE Journal of Power and Energy Systems, 2020, 6(4), 760.
26 NREL. [2021-06-17]. https://www.nrel.gov/pv/.
27 Liang Q C, Qiao F, Yang J, et al. Materials China, 2019, 38(5), 505(in Chinese).
梁启超, 乔芬, 杨健, 等. 中国材料进展, 2019, 38(5), 505.
28 Green M A, Dunlop E D, Hohl-Ebinger J, et al. Progress in Photovol-taics: Research and Applications, 2021,29(7), 657.
29 Yamaguchi M,Dimroth F, Geisz J F, et al. Journal of Applied Physics, 2021, 129(24),240901.
30 Lupangu C, Bansal R C. Renewable and Sustainable Energy Reviews, 2017, 73, 950.
31 Ahmed R, Sreeram V, Mishra Y, et al. Renewable and Sustainable Energy Reviews, 2020, 124, 109792.
32 Radziemska E. Renewable Energy, 2003, 28(1), 1.
33 Kazemian A, Salari A, Hakkaki-fard A, et al. Applied Energy, 2019, 238, 734.
34 Li L B, Wang Z X, Liu B, et al. Acta Energiae Solaris Sinica, 2016, 37(6), 1418(in Chinese).
李练兵,王增喜,刘斌,等. 太阳能学报,2016,37(6),1418.
35 Lorenzo E, Moreton R, Luque I. Progress in Photovoltaics, Research and Applications, 2014, 22(1), 666.
36 Lu H, Zhao W J. Applied Energy, 2018, 220, 514.
37 Feng Z C, Wang Y H, Wu L L, et al. Acta Energiae Solaris Sinica, 2015, 36(2), 392(in Chinese).
冯志诚,王亚辉,吴露露,等. 太阳能学报,2015,36(2),392.
38 Fouad M M, Shihata L A, Morgan E S I. Renewable and Sustainable Energy Reviews, 2017, 80, 1499.
39 Sharma P, Harinarayana T. International Journal of Energy and Environmental Engineering, 2013, 4(1), 1.
40 Nordmann T, Clavadetscher L. Progress in Photovoltaics Research & Applications, 2004, 12, 485.
41 Zhu Y H, Zhao C J, Liu Y S, et al. East China Electric Power, 2009, 37(7), 1145(in Chinese).
朱元昊, 赵春江, 刘永生, 等. 华东电力, 2009, 37(7), 1145.
42 Nordmann T, Goetzberger A. In: Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion-WCPEC (A Joint Confe-rence of PVSC, PVSEC and PSEC). Hawaii, 1994, pp.766.
43 Poe C, Plovnick A, Hodges T, et al. Highway renewable energy:photovoltaic noise barriers, Department of Transportation, U.S., 2017.
44 Liang S, Li X, Chang Y Y, et al. Noise and Vibration Control, 2009, 29(3), 66(in Chinese).
梁森,李烜,常园园,等. 噪声与振动控制,2009,29(3),66.
45 Wadhawan S R, Pearce J M. Renewable and Sustainable Energy Reviews, 2017, 80, 125.
46 Schepper E D, Passel S V, Manca J, et al. Renewable Energy, 2012, 46, 297.
47 Zhong T, Zhang K, Chen M, et al. Renewable Energy, 2021, 168, 181.
48 Wang Y. Journal of Physics, Conference Series, 2020, 1549(5), 052118.
49 Zdyb A, Z·elazna A, Krawczak E. Journal of Ecological Engineering, 2019, 20(10), 183.
50 Kanellis M, De J M M, Slooff L, et al. Renewable Energy, 2017, 103, 647.
51 Zimmerman R, Panda A, Bulovic V. Applied Energy, 2020, 276, 115149.
52 Faturrochman G J, De J M M, Santbergen R, et al. Solar Energy, 2018, 162, 300.
53 De J M M, Van D D M N, Verkuilen S, et al.In: 32nd European Photovoltaic Solar Energy Conference and Exhibition. Munich, 2016, pp.2732.
54 Yang P H, Chen S X, Xiao J W. Technology and Innovation, 2020(17), 19(in Chinese).
杨鹏浩,陈诗璇,肖建伟. 科技与创新,2020(17),19.
55 Poe C, Filosa G. Transportation Research Record, 2012, 2270(1), 23.
56 Hu J X. Structure optimization and model preparation for solar pavement of hollow slab based on micro photovoltaic array. Master’s Thesis, Changsha University of Science and Technology, China, 2019(in Chinese).
胡锦湘. 基于微光伏阵列的空心板块太阳能路面结构优化与模型制备. 硕士学位论文,长沙理工大学, 2019.
57 Meng J W, Jia W, Zhang H W. China Environment, 2021(Z1), 44(in Chinese).
孟静惟,贾伟,张惠文. 中华环境, 2021(Z1), 44.
58 HBCI. (2018-06-14) [2021-06-17].http://www.hbjttz.com/xwzx/jtxw/201806/t20180614_1299214.shtml.
59 Kim S, Lee Y, Moon H R. Renewable and Sustainable Energy Reviews, 2018, 81, 3061.
60 Jung J, Han S U, Kim B. Applied Energy, 2019, 242, 57.
61 Kim B, Han S U, Heo J, et al. Renewable Energy, 2020, 151, 366.
62 Lamb M J, Collis R, Deix S, et al. In: 24th World Road Congress Proceedings: Roads for a Better Life, Mobility, Sustainability and Development. Mexico, 2011, pp.1.
63 Johny S, John K S. International Journal of Recent Innovation in Engineering and Research, 2017, 2(3), 104.
64 Agawal R, Prakash O. Imperial Journal of Interdisciplinary Research, 2017, 2(3), 1972.
65 Jiang H F, Cen Y Q, Zha X D, et al. DEStech Transactions on Environment Energy and Earth Sciences, 2018, 31,1.
66 Brusaw S D, Brusaw J A. U.S. patent, US201329452723F, 2014.
67 SR. [2021-06-17]. http://www.solarroadways.com.
68 Nussbaum J H, Lake R A, Coutu R A.In: 2016 IEEE National Aerospace and Electronics Conference (NAECON) and Ohio Innovation Summit (OIS). New York, 2016, pp.1.
69 Coutu R A, Newman D, Munna M, et al. Technologies, 2020, 8(1), 8010009.
70 Colas. [2021-06-17]. http://www.wattwaybycolas.com.
71 Selvaraju R K. Characterization of solar roadways via computational and experimental investigations. Master’s Thesis, Western University,Canada, 2012.
72 Northmore A B, Tighe S L. International Journal of Pavement Enginee-ring, 2016, 17(5), 449.
73 Solaroad. [2021-06-17]. https://www.solaroad.nl.
74 Shekhar A, Kumaravel V K, Klerks S, et al. IEEE Journal of Photovoltaics, 2018, 8(4), 1066.
75 Vizzari D, Chailleux E, Gennesseaux E, et al. Road Materials and Pavement Design, 2019, 20(S1), 112.
76 Vizzari D, Chailleux E, Gennesseaux E. Infrastructures,2020,5(1),5.
77 Efihymiou C, Santamouris M, Kolokotsa D, et al. Solar Energy, 2016, 130, 148.
78 Dezfooli A S, Nejad F M, Zakeri H, et al. Solar Energy,2017,149,272.
79 Khan F, Rezgui B D, Kim J H. Materials, 2020, 13(2), 470.
80 Choi Y, Choi J, Kim B, et al. In: International Symposium on Energy Geotechnics. Berlin, 2018, pp.83.
81 Onyxsolar. [2021-06-17]. https://www.onyxsolar.com/product-services/photovoltaic-glass-solutions/pv-floor.
82 Platio. [2021-06-17]. http://www.platio.cc.
83 Solmove. [2021-06-17]. https://www.solmove.com/en/.
84 Mirai Labo. [2021-06-17]. https://mirai-lab.com/solarmobiway.
85 Zeng J. Mechanical analysis of hollow slab pavement structure. Master’s Thesis, Changsha University of Science and Technology, China, 2013(in Chinese).
曾军. 空心板块路面结构力学分析. 硕士学位论文, 长沙理工大学, 2013.
86 Cai L. Experimental research on structural model of hollow slab for solar energy pavement. Master’s Thesis, Changsha University of Science and Technology, China, 2014(in Chinese).
蔡良. 太阳能空心板块路面结构模型试验研究. 硕士学位论文, 长沙理工大学,2014.
87 Zha X D, Zhang C J, Wu Z J, et al. Acta Energiae Solaris Sinica, 2016, 37(1), 136(in Chinese).
查旭东, 张铖坚, 伍智吉, 等. 太阳能学报, 2016, 37(1), 136.
88 查旭东, 岑晏青, 肖秋明, 等.中国专利,CN201810030482, 2018.
89 Wang M, Zhang Y H, Wang S Q. Highway, 2020, 65(7), 304(in Chinese).
王明, 张宇辉, 王帅琪. 公路, 2020, 65(7), 304.
90 Zha X D, Wang Z W, Hu H W, et al. Journal of Chang’an University (Natural Science Edition), 2020, 40(1), 87(in Chinese).
查旭东, 王子威, 胡恒武, 等. 长安大学学报(自然科学版), 2020, 40(1), 87.
91 Zha X D, Hu H W, Wang Z W, et al. IOP Conference Series, Materials Science and Engineering, 2021, 1075(1), 012028.
92 Li Z H. Research on preparation and performance of material and model for solar pavement based on transparent resin concrete. Master’s Thesis, Changsha University of Science and Technology, China, 2018(in Chinese).
李子豪. 基于透明树脂混凝土的太阳能路面材料与模型制备及性能研究. 硕士学位论文,长沙理工大学, 2018.
93 Li Y, Zhang J P, Cao Y, et al. Construction and Building Materials, 2021, 280, 122551.
94 查旭东, 肖秋明, 李子豪,等.中国专利, CN201720487508, 2017.
95 Wang Z W. Structure design and model preparation for photovoltaic solar pavement slab with non-tracking and self-concentrating. Master’s Thesis, Changsha University of Science and Technology, China, 2020(in Chinese).
王子威. 免跟踪自聚光式光伏太阳能路面板块结构设计与模型制备.硕士学位论文, 长沙理工大学, 2020.
96 Ma T, Yang H X, Gu W B, et al. Energy Conversion and Management, 2019, 183, 764.
97 Liu Z Y, Yang A Q, Gao M Y, et al. Journal of Cleaner Production, 2019, 228, 303.
98 查旭东, 胡恒武, 李孟杰, 等. 中国专利, CN202011016555, 2020.
99 Wu L J, Yuan Y, Wu H. Conference Series, 2020, 1659(1), 012041.
100 Zhou B C, Pei J Z, Hughes B R, et al. Construction and Building Materials, 2020, 239, 117864.
101 Xiang B, Yuan Y P, Ji Y S, et al. Solar Energy, 2020, 199, 1.
102 Yang M, Zhang X L, Zhou X C, et al. Journal of Energy Storage, 2021, 35, 102246.
103 Li S J, Chen Z W, Liu X, et al. Applied Energy, 2021, 283, 116287.
104 Zhou B C, Pei J Z, Nasir D M. et al. Transportation Research Part D, Transport and Environment, 2021, 93, 102753.
105 YongTai News Network. (2020-08-12) [2021-06-17]. http://www.fjytxww.com/2020-08/12/content_1021461.htm(in Chinese).
永泰新闻网. (2020-08-12) [2021-06-17]. http://www.fjytxww.com/2020-08/12/content_1021461.htm.
106 Golden J S, Carlson J, Kaloush K E, et al. Solar Energy, 2007, 81(7),872.
107 Shama P, Harinarayana T. International Journal of Energy and Environmental Engineering, 2013, 4(16), 1.
108 Mans T. [2021-06-17]. https://manstham.com/solar-serpents-in-paradise/.
109 Pete Singer. (2011-12-14) [2021-06-17]. https://www.renewableenergyworld.com/solar/photovoltaic-installations-around-the-world/.
110 Lori Z. (2012-07-05) [2021-06-17]. https://inhabitat.com/construction-of-the-worlds-largest-solar-bridge-reaches-halfway-point-in-london/.
111 查旭东, 周向阳, 肖秋明, 等. 中国专利,CN201610915083, 2019.
112 陈五奎, 刘强, 雷晓全, 等. 中国专利,CN201920235040, 2019.
113 张玉坤, 韩丹, 张睿, 等. 中国专利,CN201610409411, 2016.
114 Gong S N, Zhang Y K, Han D, et al. Building Energy Efficiency, 2017, 45(6), 83(in Chinese).
宫盛男, 张玉坤, 韩丹, 等. 建筑节能, 2017, 45(6), 83.
115 Gong S N, Zhang Y K, Zhang R, et al. Building Energy Efficiency, 2017, 45(11), 88(in Chinese).
宫盛男, 张玉坤, 张睿, 等. 建筑节能, 2017, 45(11), 88.
116 Zhang S P, Wang X P, Shi L N, et al. Technology of Highway and Transport, 2018, 34(3), 86(in Chinese).
张世平, 王兴平, 史玲娜, 等. 公路交通技术, 2018, 34(3), 86.
117 Xia P X, Duan R Y, Wang Z H, et al. Tunnel Construction, 2020, 40(5), 711(in Chinese).
夏鹏曦, 段儒禹, 汪主洪, 等. 隧道建设(中英文), 2020, 40(5), 711.
118 Birnie III D P. Journal of Power Sources, 2009, 186(2), 539.
119 Robinson J, Brace G, Griswold W, et al. Sustainability, 2014, 6(10), 7358.
120 Nunes P, Figueiredo R, Brito M C. Renewable and Sustainable Energy Reviews, 2016, 66, 679.
121 Byrne J, Nyangon J, Hegedus S S, et al. Feasibility study of city-scale solar power plants using public buildings, case studies of Newark and Wilmington Delaware with early investigations of bifacial solar modules and dual orientation racking as tools for city-scale solar development. University of Delaware, Newark, 2019.
122 Neumann H M, Schar D, Baumgartner F. Progress in Photovoltaics, Research and Applications, 2012, 20(6), 639.
123 Tulpule P J, Marano V, Yurkovich S, et al. Applied Energy, 2013, 108, 323.
124 Deshmukh S S, Pearce J M. Renewable Energy, 2021, 169, 608.
125 Umer F, Aslam M S, Rabbani M S, et al. International Journal of Photoenergy, 2019, 2019(36), 6372503.
126 Wu S B, Wei C C, Yu J. Strategic Study of CAE, 2012, 14(11), 63(in Chinese).
吴少波, 魏川川, 余江. 中国工程科学, 2012, 14(11), 63.
127 Li S K, Zhang X, Fang X L, et al. Acta Energiae Solaris Sinica, 2019, 40(2), 530(in Chinese).
李寿科, 张雪, 方湘璐, 等. 太阳能学报, 2019, 40(2), 530.
128 Li S K,Liu Z Y, Zhang X, et al. Journal of Vibration and Shock, 2019, 38(7), 240(in Chinese).
李寿科, 刘智宇, 张雪, 等. 振动与冲击, 2019, 38(7), 240.
129 Turan M T, Ates Y, Erdinc O, et al. International Journal of Electrical Power & Energy Systems, 2019, 109, 283.
130 Alghamdi A S, Bahaj A B S, Wu Y. Energies, 2017, 10(5), 686.
131 Figueiredo R, Nunes P, Brito M C. Energy, 2017, 140, 1182.
[1] 孙思威, 金鑫, 邓昌宁, 郭乃胜, 余耀威. 基于分形理论的蓄能自发光道路标线涂料性能预测模型研究[J]. 材料导报, 2022, 36(Z1): 20110256-7.
[2] 程培峰, 杨宗昊, 张展铭, 徐进. 热老化下纳米蒙脱土/SBS复合改性沥青愈合性能及微观机制分析[J]. 材料导报, 2022, 36(9): 21020100-6.
[3] 张永军, 罗文波. 重复荷载下玄武岩纤维沥青混合料的永久变形及其分数阶黏弹塑性模型[J]. 材料导报, 2022, 36(9): 21020108-7.
[4] 周雯怡, 易军艳, 陈卓, 冯德成. 泡沫沥青冷再生混合料界面黏附性提升原理与路用性能验证[J]. 材料导报, 2022, 36(16): 21110120-9.
[5] 姚玉权, 仰建岗, 高杰, 何亮, 许竞. 就地热再生沥青混合料的材料组成波动及控制策略[J]. 材料导报, 2022, 36(16): 22030098-10.
[6] 杨彦海, 王汉彬, 杨野. 冻融循环作用下乳化沥青冷再生混合料空隙特性[J]. 材料导报, 2022, 36(16): 21110128-7.
[7] 岳红亚, 毕玉峰, 徐 润, 张常勇, 丁婷婷, 李怀峰, 刘晓威, 宋修广. 废旧轮胎在道路工程中的应用研究进展[J]. 材料导报, 2022, 36(16): 22040129-11.
[8] 姚 震, 张凌波, 梁鹏飞, 王仕峰, 颜川奇. 多种湿法橡胶改性沥青的综合性能评价与改性机理研究[J]. 材料导报, 2022, 36(16): 21120124-7.
[9] 李文博, 柳力, 刘朝晖, 刘俊豪. 促溶-表面处理二元复合作用对橡胶沥青性能的影响[J]. 材料导报, 2022, 36(11): 21010088-7.
[10] 范世平, 朱洪洲, 钟伟明. 生物重油对老化50#沥青的再生效果评价[J]. 材料导报, 2022, 36(11): 21010089-5.
[11] 杨健, 郭乃胜, 郭晓阳, 王志臣, 房辰泽, 褚召阳. 基于分子动力学的泡沫沥青-集料界面黏附性研究[J]. 材料导报, 2021, 35(z2): 138-144.
[12] 戴文亭, 刘丹丹, 郭威, 李颖松, 安胤. 冻融循环条件下硅烷偶联剂改性泡沫沥青混合料的损伤特性[J]. 材料导报, 2021, 35(Z1): 264-268.
[13] 凌天清, 崔立龙, 张意, 田波, 李定珠. 考虑沥青层表面细观构造的探地雷达空隙率检测研究[J]. 材料导报, 2021, 35(24): 24081-24087.
[14] 王晓锋, 梁波, 陈玉凡, 张宽宽. 电位滴定法在沥青研究中的应用及展望[J]. 材料导报, 2021, 35(23): 23076-23088.
[15] 范世平, 朱洪洲. 细粒式沥青混合料断裂愈合预估模型[J]. 材料导报, 2021, 35(18): 18090-18095.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed