Please wait a minute...
材料导报  2021, Vol. 35 Issue (12): 12181-12189    https://doi.org/10.11896/cldb.20050031
  高分子与聚合物基复合材料 |
“枣糕状”结构杂多酸离子液体负载磁性复合材料的制备及超声脱硫的催化性能
陈定宁1,2, 沈昊宇1, 成瑾瑾1, 胡美琴1
1 浙大宁波理工学院,宁波 315100
2 浙江大学化学工程与生物工程学院,杭州 310058
Preparation of Jujube-cake-like Structured Heteropoly Acid Ionic Liquids Supported Magnetic Composite and Its Catalytic Property for Ultrasound-assisted Desulfurization
CHEN Dingning1,2, SHEN Haoyu1, CHENG Jinjin1, HU Meiqin1
1 NingboTech University,Ningbo 315100, China
2 College of Chemistry and Biological Engineering, Zhejiang University, Hangzhou 310058, China
下载:  全 文 ( PDF ) ( 4431KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石油中的含硫化合物不仅影响油品质量,其燃烧生成的硫氧化物(SOx)还会对生态环境和人类健康构成极大威胁。此外,燃油中的硫化物燃烧使得燃油尾气处理设备中催化剂中毒,从而排放一些其他有害的汽车尾气,如氮氧化物(NOx)、碳氢化合物和一氧化碳(CO)等。为了降低燃油中的硫含量,世界各国政府都颁布了严格的标准,如美国环保署在2006年将柴油中的硫含量降低到15 mg/kg;2007年欧盟和日本将柴油中的硫含量上限设定为10 mg/kg 。自2017年起,我国政府发布了国V标准,将柴油中的硫含量限制在10 mg/kg以下。随着各项政策的出台,如何通过高效深度脱硫技术降低石油中的硫含量已成为石油化工领域的研究热点。同时,超深脱硫在解决工业废物再利用中也发挥着重要作用。
目前常用的深度脱硫的方法主要有加氢脱硫(HDS)和非加氢脱硫(NHDS)。由于传统的HDS方法存在去除噻吩类物质困难、成本高、条件苛刻、耗时耗能等缺点,NHDS以其低能耗、环保等优点逐渐受到人们的青睐。NHDS技术包括氧化脱硫、吸附脱硫、萃取脱硫和生物脱硫等。其中,氧化脱硫可以通过氧化剂将有机硫化物转化为砜或亚砜,提高有机硫化物在极性溶剂中的溶解度,通过萃取和蒸馏等方法将有机硫化物从石油中分离出来,达到深度脱硫的目的。与机械搅拌、生物或光催化氧化脱硫等传统脱硫方法相比,超声辅助氧化脱硫法是反应时间最短、效率最高的方法之一。
近年来,离子液体因良好的热稳定性和化学稳定性而受到越来越多的关注,并被广泛应用于催化氧化脱硫。在杂多酸中引入离子液体可以形成具有氧化活性中心的杂多酸离子液体,有望表现出优异的催化活性。Xun等采用溶胶-凝胶法制备了杂多酸离子液体催化剂(SiW12O40-IL),该催化剂在脱硫方面具有优异的催化活性,当温度为60 ℃,n(O)/n(S)为4时,其脱硫率达到99.9%。然而,作为均相催化剂,杂多酸离子液体也存在回收率低、可重复利用性差等缺点,因此选择合适的固载化方法,实现杂多酸离子液体催化剂的异相化十分关键。常用的载体有SiO2、Al2O3、Fe3O4等,其中磁性复合材料可以实现催化剂和油样在磁场作用下的快速分离,已成为目前最为流行的载体之一。将磁性复合材料通过改性结合到催化剂上,有望得到具有较高的脱硫催化活性和优异分离效果的催化剂。为此,本研究设计并成功合成了一种具有“枣糕状”结构的、杂多酸离子液体[BMIM]3PW12O40负载的三乙烯四胺(TETA)功能化的Fe3O4复合材料([BMIM]3PW12O40/Fe3O4@TETA)。以正辛烷为模拟油样,二苯并噻吩为硫源,过氧化氢为氧化剂,[BMIM]3PW12O40/Fe3O4@TETA为催化剂,通过超声协助考察了催化剂的催化氧化脱硫。采用响应面法(RSM)研究了超声时间、H2O2用量、反应温度对催化剂脱硫的影响;并考察了催化剂的稳定性和再生性能。对[BMIM]3PW12O40/Fe3O4@ TETA的脱硫机理进行了初步探讨,结果表明,采用0.025 g [BMIM]3PW12O40/Fe3O4@ TETA对50 mL浓度为500 mg/g的二苯并噻吩的模拟油样进行脱硫实验时,最佳脱硫条件为:反应温度325 K,超声时间15 min,n(O)∶n(S)=8∶1,脱硫率可达96.5%。该催化剂重复使用五次后,脱硫率仍保持在93.7%,表明[BMIM]3PW12O40/Fe3O4@ TETA具有良好的催化脱硫性能,可以重复使用。初步的脱硫机理研究表明,[BMIM]3PW12O40/Fe3O4@ TETA的催化活性中心可能为其含有的杂多酸阴离子;Fe3O4@TETA起到载体的作用,而离子液体起到协同增强作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈定宁
沈昊宇
成瑾瑾
胡美琴
关键词:  杂多酸离子液体  磁性复合材料  “枣糕状”结构  氧化脱硫  响应面法(RSM)    
Abstract: Heteropoly acid ionic liquid [BMIM]3PW12O40 was firstly synthesized, followed by being loaded on the triethylenetetramine-functionalized Fe3O4 (Fe3O4@TETA) via ultrasonic impregnation. A jujube-cake-like structure magnetic composite, i. e., [BMIM]3PW12O40/Fe3O4@TETA was obtained. It was characterized by FTIR, XRD, VSM, XPS, TEM and SEM and used as catalyst for the oxidation of n-octane simulated oil samples with dibenzothiophene as sulfur source, via hydrogen peroxide as oxidant. The effects of ultrasonic time, H2O2 usage amount, and reaction temperature were investigated via the response surface methodology (RSM). The results showed that the optimized catalytic degradation rate reached 96.5% when 0.025 g [BMIM]3PW12O40/Fe3O4@TETA was used for the desulfurization of 50 mL simulated oil sample with the concentration of dibenzothiophene at 500 mg/g. The optimum desulfurization rate was obtained when the ultrasound time was at 15 min with n(O)∶n(S) at 8∶1 and reactive temperature at 325 K. After being reused for 5 times, the catalytic degradation rate can still remained 93.7%, which indicated that the [BMIM]3PW12O40/Fe3O4@TETA was of good catalytic desulfurization performance and can be reused. The primary desulfurization mechanism study showed that the catalytic active center might be the heteropoly acid anion of the [BMIM]3PW12O40/Fe3O4@TETA, with the Fe3O4@TETA as a supporter and the ionic liquid as a cooperative enhancer, respectively.
Key words:  heteropoly acid ionic liquids    magnetic composite material    jujube-cake-like structure    oxidative desulfurization    response surface methodology (RSM)
               出版日期:  2021-06-25      发布日期:  2021-07-01
ZTFLH:  TB332  
基金资助: 北京教委重点项目(KZ201810005008)
通讯作者:  hyshen@nit.zju.edu.cn   
作者简介:  陈定宁,2019年6月毕业于湖南科技大学。目前为浙江大学与浙大宁波理工学院联合培养的硕士研究生,主要从事废水净化和离子色谱柱填料制备的研究。
沈昊宇,1999年6月毕业于南开大学。目前为浙大宁波理工学院教授,主要从事纳米功能材料及其在环境化学中的应用研究。
引用本文:    
陈定宁, 沈昊宇, 成瑾瑾, 胡美琴. “枣糕状”结构杂多酸离子液体负载磁性复合材料的制备及超声脱硫的催化性能[J]. 材料导报, 2021, 35(12): 12181-12189.
CHEN Dingning, SHEN Haoyu, CHENG Jinjin, HU Meiqin. Preparation of Jujube-cake-like Structured Heteropoly Acid Ionic Liquids Supported Magnetic Composite and Its Catalytic Property for Ultrasound-assisted Desulfurization. Materials Reports, 2021, 35(12): 12181-12189.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050031  或          http://www.mater-rep.com/CN/Y2021/V35/I12/12181
1 Yao Z, Miras H N, Song Y. Inorganic Chemistry Frontiers, 2016, 3, 1007.
2 Stanislaus A, Marafi A, Rana M S. Catalysis Today, 2010, 153, 1.
3 Waked A, Afif C. Atmospheric Environmental, 2012, 61, 446.
4 Mao L, Huang Y F. Materials Reports B: Research Papers, 2017, 31(7), 31 (in Chinese).
马丽, 黄艳凤. 材料导报:研究篇, 2017, 31(7), 31.
5 Chen T C, Shen Y H, Lee W J, et al. Journal of Cleaner Production, 2013, 39,129.
6 Ye X, Guo S, Qu W, et al. Journal of Hazardous Materials, 2019, 366, 432.
7 Zheng M, Hu H, Ye Z, et al. Journal of Hazardous Materials, 2019, 362, 424.
8 Juliao D, Gomes A C, Pillinger M, et al. Applied Catalysis B, 2018, 230, 177.
9 Cano P I, Colon J, Ramirez M, et al. Journal of Cleaner Production, 2018, 181, 663.
10 Pouladi B, Fanaei M A, Baghmisheh G. Journal of Cleaner Production, 2019, 209, 965.
11 Dai C, Zhang J, Huang C, et al. Chemical Reviews, 2017, 117, 6929.
12 Han X, Ouyang K, Xiong C, et al. Applied Catalysis A, 2017, 543, 115.
13 Xun S, Zhu W, Chang Y, et al. Chemical Engineering Journal, 2016, 288, 608.
14 Weng L Y, Wang Y F, Shen H Y, et al. Desalination and Water Treatment, 2019, 142, 353.
15 Yuan B, Zhao W, Yu F, et al. Catalysis Communication, 2014, 57, 89.
16 Zhang Y Q, Qiu J H, Wang G H, et al. Materials Reports B:Research Papers,2013, 27(6), 75 (in Chinese).
张玉琴, 邱江华, 王光辉, 等. 材料导报:研究篇, 2013, 27(6), 75.
17 Ammar M, Cao Y, Wang L, et al. Research on Chemical Intermediates, 2017, 43, 6951.
18 Liu R, Dou S, Yu M, et al. Journal of Cleaner Production, 2017, 168, 1048.
19 Liu B, Zhang W, Yang F K,et al. Journal of Physical Chemistry C, 2011, 115, 15875.
20 Manikandan K, Cheralthan K K. Applied Catalysis A, 2017, 547, 237.
21 Xie X, Han J, Wang H, Zhu X, et al. Catalysis Today, 2014, 233, 70.
22 Aze C, Bordiga S, Zecchina A. Langmuir, 2000, 16, 8139.
23 Li M, Zhang M, Wei A, et al. Journal of Molecular Catalysis A, 2015, 406, 23.
24 Isahak W N R W, Ramli Z A C, Ismail M, et al. Industrial & Enginee-ring Chemistry Research, 2014, 53, 10285.
25 Li D, Ding Y, Wang J, et al. Journal of Molecular Catalysis A, 2007, 262, 67.
26 Shen H Y, Chen J L, Dai H F, et al. Industrial & Engineering Chemistry Research, 2013, 52, 12723.
27 Hashemzadeh A, Amimi M M, Tayebee R, et al. Molecular Catalysis, 2017, 440, 96.
28 Zhang Z, Zheng H. Journal of Hazardous Materials, 2009, 172, 1388.
29 Afzalinia A, Mirzaie A, Nikseresht A, et al. Ultrasonics Sonochemistry, 2017, 34, 713.
30 Yang H, Zhang Q, Zhang J, et al. Journal of Colloid and Interface Science, 2019, 554, 572.
31 Ammar S H, Kareem Y S, Ali A D, Journal of Environmental Chemical Engineering, 2018, 6, 6780.
32 Lu W, Shen Y, Xie A, et al. Journal Magnetism and Magnetic Mate-rials, 2013, 345, 142.
33 Margeta D, Sertic-Bionda K, Foglar L. Applied Acoustics, 2016, 103, 202.
34 Wang L, Chen Y, Du L, et al. Fuel, 2013, 105, 353.
35 Zheng D, Zhu W, Xun S, et al. Fuel, 2015, 159, 446.
36 Hao L, Sun L, Su T, et al. Chemical Engineering Journal, 2019, 358, 419.
[1] 王静文, 王伟. 玄武岩纤维增强泡沫混凝土响应面多目标优化[J]. 材料导报, 2019, 33(24): 4092-4097.
[1] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
[4] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[5] Dingfa FU,Yu LENG,Wenli GAO. Effect of Microalloying Element Niobium on the Strength and Toughness of Low Carbon Cast Steels[J]. Materials Reports, 2018, 32(2): 237 -242 .
[6] YU Yan, MA Fengsen, LU Jiajun, CHEN Haibo. In Vitro Cytotoxicity Evaluation of Cellulose Absorbable Hemostatic Materials[J]. Materials Reports, 2018, 32(6): 874 -880 .
[7] SHI Yuanji, WU Xiaochun, MIN Na. Thermal Stability Mechanism of Fe-Cr-Mo-W-V Hot Working Die Steel[J]. Materials Reports, 2018, 32(6): 930 -936 .
[8] BAI Yuanrui, MA Jianzhong, LIU Junli, BAO Yan, CUI Wanzhao, HU Tiancun, WU Duoduo. Construction of Silver Film by Colloidal Crystal Template and Its Micro-discharge Inhibition Performance[J]. Materials Reports, 2018, 32(4): 515 -519 .
[9] LI Yong, ZHU Jing, WANG Ying, LI Huan, ZHAO Yaru. Formation Mechanism of Band Structure in Directionally Solidified Cu-0.33Cr-0.1Ti Hypoeutectic Alloy[J]. Materials Reports, 2018, 32(4): 602 -605 .
[10] LI Hui, CHEN Jiayong, DUAN Xiaoge, JIANG Haitao. Stability and TRIP Effect of Retained Austenite of Medium Manganese Q&P Steel[J]. Materials Reports, 2018, 32(4): 611 -615 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed