Please wait a minute...
材料导报  2019, Vol. 33 Issue (24): 4092-4097    https://doi.org/10.11896/cldb.19010130
  无机非金属及其复合材料 |
玄武岩纤维增强泡沫混凝土响应面多目标优化
王静文1, 王伟2
1 鄂尔多斯应用技术学院土木工程系,鄂尔多斯 017000
2 东南大学电气工程学院,南京 210096
Response Surface Based Multi-objective Optimization of Basalt Fiber Reinforced Foamed Concrete
WANG Jingwen1, WANG Wei2
1 Department of Civil Engineering, Ordos Institute of Technology, Ordos 017000
2 Department of Electrical Engineering, Southeast University, Nanjing 210096
下载:  全 文 ( PDF ) ( 3976KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为改善传统泡沫混凝土的力学性能,制备了以玄武岩纤维为微加筋材料的玄武岩纤维增强泡沫混凝土(BFFC)。采用响应面法设计试验并建立回归模型,研究泡沫和纤维掺量对BFFC表观密度、抗压强度和抗压韧性指数的影响;同时结合渴求函数对BFFC综合性能实现多目标优化,并对纤维作用机理进行了SEM分析。结果表明,制备单位体积BFFC成品的最优泡沫掺量与纤维掺量分别为0.617 875 m3与2.384 66 kg,该配比可以制备出表观密度仅为641.06 kg/m3而抗压强度高达13.60 MPa、抗压韧性指数高达0.887的BFFC。SEM分析表明,适量玄武岩纤维通过桥联作用下的多裂缝稳定扩展实现了对泡沫混凝土的增强及增韧。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王静文
王伟
关键词:  玄武岩纤维  泡沫混凝土  抗压性能  响应面法(RSM)  多目标优化    
Abstract: In order to improve the mechanical properties of traditional foamed concrete, basalt fiber reinforced foamed concrete (BFFC) was prepared. The response surface methodology was used to design the test and establish the regression model to analyze the influence of the content of foam and fiber on apparent density, compressive strength and compressive toughness of BFFC. The desirability function was used to do the multi-objective optimization, and the fiber mechanism was analyzed by SEM. The results show that the optimal foam and fiber content for BFFC products per unit volume are 0.617 875 m3 and 2.384 66 kg respectively, which can achieve BFFC with apparent density of 641.06 kg/m3, compressive strength up to 13.60 MPa, and compressive toughness index up to 0.887. The microscopic analysis result shows that basalt fiber of appropriate amount can strengthen and toughen the foamed concrete through the stable propagation of multiple cracks under the bridging action.
Key words:  basalt fiber    foamed concrete    compressive properties    response surface methodology (RSM)    multi-objective optimization
               出版日期:  2019-12-25      发布日期:  2019-10-28
ZTFLH:  TU528.3  
基金资助: 内蒙古自治区教育厅高等学校科学研究项目(NJZY18251)
作者简介:  王静文,2013年12月毕业于英国诺丁汉大学,获得硕士学位。自2014年9月起在鄂尔多斯应用技术学院从事教学科研工作,现为讲师,主要从事水泥基复合材料的研究。
引用本文:    
王静文, 王伟. 玄武岩纤维增强泡沫混凝土响应面多目标优化[J]. 材料导报, 2019, 33(24): 4092-4097.
WANG Jingwen, WANG Wei. Response Surface Based Multi-objective Optimization of Basalt Fiber Reinforced Foamed Concrete. Materials Reports, 2019, 33(24): 4092-4097.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010130  或          http://www.mater-rep.com/CN/Y2019/V33/I24/4092
1 Fiore V, Scalici T, Di Bella G, et al. Composites Part B: Engineering, 2015, 74, 74.2 Ye B T, Jiang J Y, Wang W H, et al. Materials Review A:Review Papers, 2013, 27(10), 102(in Chinese).叶邦土, 蒋金洋, 王文灏, 等. 材料导报:综述篇, 2013, 27(10), 102.3 Cao M L, Xu L, Zhang C. Journal of the Chinese Ceramic Society, 2015, 43(5), 632(in Chinese).曹明莉, 许玲, 张聪. 硅酸盐学报, 2015, 43(5), 632.4 Ralegaonkar R, Gavali H, Aswath P, et al. Construction and Building Materials, 2018, 164, 589.5 Branston J, Das S, Kenno S Y, et al. Construction and Building Mate-rials, 2016, 124, 878.6 Chen B, Liu J. Journal of Building Materials, 2010, 13(3), 286(in Chinese).陈兵, 刘睫. 建筑材料学报, 2010, 13(3), 286.7 Kearsley E P, Wainwright P J. Cement & Concrete Research, 2002, 32(2), 233.8 Zhao X, Huo J C, Gao Y, et al. China Concrete and Cement Product, 2012(12), 54(in Chinese).赵星, 霍冀川, 高亚, 等. 混凝土与水泥制品, 2012(12), 54.9 Yang R H, Huo J C, Zhao X, et al. China Concrete and Cement Product, 2014(3), 62(in Chinese).杨瑞环, 霍冀川, 赵星, 等. 混凝土与水泥制品, 2014(3), 62.10 Raymond H Myers, Douglas C Montgomery, Christine M Anderson-Cook. Response Surface Methodology, Willy, US, 2016.11 Algin Z, Ozen M. Construction and Building Materials, 2018, 186, 678.12 Aziminezhad M, Mahdikhani M, Memarpour M M. Construction and Building Materials, 2018, 189, 1200.13 Xing X G, Xu J Y, Bai E L, et al. Materials Review B: Research Papers, 2018, 32(4), 1367(in Chinese).邢小光, 许金余, 白二雷, 等. 材料导报:研究篇, 2018, 32(4), 1367.14 Yan Z J. Practical technology of high performance foamed concrete insulation products, China Building Materials Industry Press, China, 2015(in Chinese).阎振甲. 高性能泡沫混凝土保温制品实用技术, 中国建材工业出版社, 2015.15 Zhou S M. Chinese Journal Rock Mechanics and Engineering, 1987, 6(3), 125(in Chinese).周思孟. 岩石力学与工程学报, 1987, 6(3), 125.16 Xu X H, He M Z. Design of experiment and application of design-expert,SPSS, Chemical Industrial Press, China, 2015(in Chinese).徐向红, 何明珠. 试验设计与Design-Expert、SPSS应用, 化学工业出版社, 2015.17 Liu Z X, Wang L. Experimental design and data processing (2nd edition), Chemical Industrial Press, China, 2015(in Chinese).刘振学,王力. 试验设计与数据处理(第二版), 化学工业出版社, 2015.18 Wang Z B, Zuo J P, Zhang J, et al. Journal of Building Materials, 2018, 21(4), 639(in Chinese).王振波, 左建平, 张君, 等. 建筑材料学报, 2018, 21(4), 639.
[1] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[2] 白光,田义,余林文,王磊. 聚乙烯醇纤维对碱矿渣泡沫混凝土性能的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2096-2099.
[3] 梁存光,李新梅. 基于灰色关联分析与回归分析WC-12Co涂层工艺参数的多目标优化[J]. 《材料导报》期刊社, 2018, 32(10): 1752-1756.
[4] 王晓东, 云斯宁, 张太宏, 尹洪峰, 徐德龙. 硅烷偶联剂表面改性玄武岩纤维增强复合材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 77-83.
[5] 刘晓英, 肖玉, 彭家惠. 微纳技术在泡沫混凝土中的应用进展*[J]. 《材料导报》期刊社, 2017, 31(3): 80-85.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed