Please wait a minute...
材料导报  2019, Vol. 33 Issue (24): 4086-4091    https://doi.org/10.11896/cldb.18100165
  无机非金属及其复合材料 |
地聚物基透水混凝土的制备与性能
曾路, 何牟, 张明华, 胡婷婷, 王淑萍, 彭小芹
重庆大学材料科学与工程学院,重庆 400045
Preparation and Properties of Geopolymer Modified Pervious Concrete
ZENG Lu, HE Mou, ZHANG Minghua, HU Tingting, WANG Shuping, PENG Xiaoqin
College of Materials Science and Engineering, Chongqing University, Chongqing 400045
下载:  全 文 ( PDF ) ( 2255KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 透水混凝土因具有透水透气、吸声减噪等功能而被广泛研究和关注。然而,其普遍存在孔隙结构,造成受力不均,使得透水混凝土只能用于低荷载的路面。为了提高透水混凝土的强度和耐久性,本研究将地聚物作为透水混凝土的胶凝材料,并采用正交试验研究了最佳配比,分析了孔隙率、骨料粒径、激固比、矿渣掺量、水玻璃模数对其性能的影响。以抗压强度、劈裂抗拉强度、透水系数、抗冻性为指标,拟合分析了孔隙率与透水系数、透水系数与抗压强度、孔隙率与抗劈裂强度之间的关系。结果表明:目标孔隙率15%、激固比60%、骨料粒径2~5 mm、水玻璃模数1.4、矿渣掺量20%为最优配比,所得地聚物透水混凝土的28 d抗压强度为33 MPa,抗劈裂强度为2.4 MPa,透水系数为8.4 mm/s,抗冻性能达标。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾路
何牟
张明华
胡婷婷
王淑萍
彭小芹
关键词:  地聚物  透水混凝土  透水系数  抗冻性    
Abstract: Pervious concrete has been widely concerned and studied due to its water and air permeability, sound absorption and noise reduction. Nevertheless, the porous structure of pervious concrete makes it bear non-uniform forces, limiting the application of pervious concrete to the pavement with low load. For the sake of improving the strength and durability of the pervious concrete, geopolymer was taken as cementing materials for pervious concrete. Orthogonal test was designed to study the optimal mixing proportion of pervious concrete. The effects of porosity, aggregate particle size, liquid-to-binder ratio, slag content and water glass modulus on the properties of pervious concrete were analyzed. Furthermore, taking the compressive strength, splitting tensile strength, permeability coefficient and freezing resistance as indices, the relationships between porosity and permeability coefficient, permeability coefficient and compressive strength, porosity and splitting tensile strength were discussed through fitting analysis. Results indicated that the optimal proportion of pervious concrete were target porosity of 15%, liquid-to-binder ratio of 60%, aggregate size of 2—5 mm, water glass modulus of 1.4, slag content of 20%. The pervious concrete obtained under optimal proportion exhibited the 28 d compressive strength of 33 MPa, splitting tensile strength of 2.4 MPa, permeability coefficient of 8.4 mm/s, with an anti-free-zing performance appropriate to the standard.
Key words:  geopolymer    the pervious concrete    permeable coefficient    freezing resistance
               出版日期:  2019-12-25      发布日期:  2019-10-28
ZTFLH:  TU52  
基金资助: 重庆市基础科学与前沿技术研究项目(cstc2017jcyj AX0315);国家自然科学基金项目(51678093)
作者简介:  曾路,毕业于中国地质大学,获得理学博士学位,重庆大学副教授,硕士研究生导师,主要研究方向为硅酸盐合成材料和新型碱激发胶凝材料等。
引用本文:    
曾路, 何牟, 张明华, 胡婷婷, 王淑萍, 彭小芹. 地聚物基透水混凝土的制备与性能[J]. 材料导报, 2019, 33(24): 4086-4091.
ZENG Lu, HE Mou, ZHANG Minghua, HU Tingting, WANG Shuping, PENG Xiaoqin. Preparation and Properties of Geopolymer Modified Pervious Concrete. Materials Reports, 2019, 33(24): 4086-4091.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100165  或          http://www.mater-rep.com/CN/Y2019/V33/I24/4086
1 Ghafoori N, Dutta S. Journal of Transportation Engineering, 1995, 121(3),283.2 Sumanasooriya M S, Neithalath N. Cement and Concrete Composites, 2011, 33(8), 778.3 Park S B, Tia M. Cement and Concrete Resarch, 2004, 34(2), 177.4 Chindaprasirt P, Hatanaka S, Chareerat T, et al. Construction and Building Materials, 2008, 22(5),894.5 Fu T C, Yeih W, Chang J J, et al. Advances in Materials Science and Engineering, 2014,2014,963971.6 Palomo A, Blanco-Varela M T, Granizo M L, et al. Cement and Concrete Research, 1999, 29(7),997.7 Bernal S A, Mejía de Gutiérrez R, Pedraza A L, et al. Cement and Concrete Resarch, 2011, 41(1),1.8 Bakharev T. Cement and Concrete Research, 2005, 35(6), 1224.9 Ye H, Cartwright C, Rajabipour F, et al. Cement and Concrete Compo-sites, 2017, 76,13.10 Lee N K, Lee H K. Cement and Concrete Composites, 2016, 72,168.11 Myers R J, Bernal S A, Provis J L. Cement and Concrete Research, 2017, 95,30.12 Park S M, Jang J G, Lee N K, et al. Cement and Concrete Research, 2016, 89,72.13 Zhang Z H, Provis J L, Zou J, et al. Cement and Concrete Research, 2016, 85,163.14 Jo M J, Soto L, Arocho M, et al. Construction and Building Materials, 2015, 93,1097.15 Chang J J, Yeih W, Chung T J, et al. Construction and Building Mate-rials, 2016, 109,34.16 Bernal S A, Provis J L, Rose V, et al. Cement and Concrete Composites, 2011, 33(1) 46.17 Yang H Y. Supervision Test and Cost of Construction, 2012, 5(2),30(in Chinese).杨海燕.建筑监督检测与造价, 2012, 5(2),30.18 Cheng J, Yang Y, Chen W Z. Concrete, 2006(10),81(in Chinese).程娟, 杨杨, 陈卫忠.混凝土, 2006(10),81.19 Deo O, Neithalath N. Materials Science and Engineering,2010, 528(1),402.20 Sata V, Wongsa A, Chindaprasirt P. Construction and Building Mate-rials, 2013, 42,33.21 Yip C K, Lukey G C, Provis J L, et al. Cement and Concrete Research, 2008, 38(4),554.22 Yang Y, Cheng J, Guo X Y. China Concrete and Cement Products, 2007(4),1(in Chinese).杨杨, 程娟, 郭向阳.混凝土与水泥制品, 2007(4),1.23 Lian C, Zhuge Y, Beecham S. Construction and Building Materials, 2011, 25(11),4294.24 Kevern J T, Wang K. Journal of Materials in Civil Engineering, 2010, 22(5), 469.25 Sarker P K. Materials and Structures, 2011, 44(5),1021.26 Zhu H J, Yao X, Zhang Z H, et al. Journal of Nanjing University of Technology (Natural Science Edition), 2009, 31(2),1(in Chinese).诸华军, 姚晓, 张祖华, 等. 南京工业大学学报(自然科学版), 2009, 31 (2),1.
[1] 刘婉婉, 马昆林, 张传芹, 龙广成, 谢友均, 边伟. 透水混凝土对城市雨水径流中污染物净化原理的研究进展[J]. 材料导报, 2019, 33(Z2): 293-299.
[2] 张雄, 王啸夫. 若干因素对透水砖性能影响机理的研究进展[J]. 材料导报, 2019, 33(23): 3949-3954.
[3] 王爱国,郑毅,张祖华,刘开伟,马瑞,孙道胜. 地聚物胶凝材料改性提高混凝土耐久性的研究进展[J]. 材料导报, 2019, 33(15): 2552-2560.
[4] 王爱国,吕邦成,段 平,武悦悦,刘开伟. 层状双氢氧化物改善地聚物抗氯离子渗透性能研究[J]. 《材料导报》期刊社, 2018, 32(10): 1707-1710.
[5] 李 三,彭小芹,苟 菁,周 淦,黄 婷,陈 洋,王淑萍. 矿物掺合料对地聚合物抗冻性能的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1711-1715.
[6] 南雪丽, 王超杰, 刘金欣, 韩博, 杨蓝蓝. 冻融循环和氯盐侵蚀耦合条件对聚合物快硬水泥混凝土抗冻性的影响*[J]. 《材料导报》期刊社, 2017, 31(23): 177-181.
[7] 王奕仁, 王栋民. 骨料种类与品质对透水混凝土性能影响的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 98-105.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed