Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (5): 77-83    https://doi.org/10.11896/j.issn.1005-023X.2017.05.013
  材料综述 |
硅烷偶联剂表面改性玄武岩纤维增强复合材料研究进展*
王晓东, 云斯宁, 张太宏, 尹洪峰, 徐德龙
西安建筑科技大学材料与矿资学院,西安 710055
Advances in Basalt Fiber-reinforced Composites Modified by Silane Coupling Agents
WANG Xiaodong, YUN Sining, ZHANG Taihong, YIN Hongfeng, XU Delong
School of Materials and Mineral Resources, Xi’an University of Architecture and Technology, Xi’an 710055
下载:  全 文 ( PDF ) ( 1906KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 表面改性是增强玄武岩纤维与基体材料之间结合性能的关键。综述了硅烷偶联剂表面改性以及酸、碱刻蚀,等离子处理辅助协同硅烷偶联剂表面改性玄武岩纤维的研究进展,介绍了硅烷偶联剂表面改性玄武岩纤维在聚合物基复合材料中的应用,并对发展趋势进行了展望,同时分析了硅烷偶联剂表面改性玄武岩纤维当前存在的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晓东
云斯宁
张太宏
尹洪峰
徐德龙
关键词:  玄武岩纤维  表面改性  硅烷偶联剂  酸、碱刻蚀  等离子处理    
Abstract: Surface modification is a key technique for enhancing the binding properties between basalt fiber reinforcement and matrix material. This paper reviews the recent progress in pre-modification of basalt fibers by using silane coupling agents, and using silane coupling agents with the assistance of acid/alkaline etching or the assistance of plasma. The application of silane coupling agents treated basalt fiber in polymer matrix composites is highlighted, and the future development of silane coupling agents treated basalt fiber-reinforced composites is prospected. Also, the key issues at present stage are analyzed.
Key words:  basalt fiber    surface modification    silane coupling agent    acid/alkaline etching    plasma treatment
出版日期:  2017-03-10      发布日期:  2018-05-02
ZTFLH:  TB332  
  TB321  
基金资助: 国家科技支撑计划(2012BAD47B02);陕西省科技厅项目(2011JM6010;2015JM5183);陕西省教育厅项目(2013JK0927)
通讯作者:  云斯宁:,男,1974年生,博士,教授,博士研究生导师,主要从事资源循环化综合利用的研究 E-mail:alexsyun1974@aliyun.com   
作者简介:  王晓东:男,1990年生,硕士研究生,研究方向为资源循环化综合利用
引用本文:    
王晓东, 云斯宁, 张太宏, 尹洪峰, 徐德龙. 硅烷偶联剂表面改性玄武岩纤维增强复合材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 77-83.
WANG Xiaodong, YUN Sining, ZHANG Taihong, YIN Hongfeng, XU Delong. Advances in Basalt Fiber-reinforced Composites Modified by Silane Coupling Agents. Materials Reports, 2017, 31(5): 77-83.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.05.013  或          https://www.mater-rep.com/CN/Y2017/V31/I5/77
1 Wei B, Cao H L, Song S H. Tensile behavior contrast of basalt and glass fibers after chemical treatment[J]. Mater Des,2010,31(9):4244.
2 Manylov M S,Gutnikov S I, Lipatov A P, et al. Effect of deferrization on continuous basalt fiber properties[J]. Mendeleev Commun,2015,25(5):386.
3 Singha K. A short review on basalt fiber[J]. Int J Text Sci,2012,1(4):19.
4 Zhang Y H, Yu C X, Chu P K, et al. Mechanical and thermal properties of basalt fiber reinforced poly(butylene succinate) composites[J]. Mater Chem Phys,2012,133(2-3):845.
5 King M, SrinivasanV, Purushothaman T. Basalt fiber an ancient material for innovative and modern application[J]. Middle-East J Sci Res,2014,22(2):308.
6 Ye Bangtu, Sun Wei, Jiang Jinyang, et al. Long-term performances and defects of basalt fiber reinforced cement paste with fly ash[J]. J Chin Ceram Soc,2012,40(8):1127 (in Chinese).
叶邦土, 孙伟, 蒋金洋, 等. 玄武岩纤维增强粉煤灰水泥浆体的耐久性及缺陷分析[J]. 硅酸盐学报,2012,40(8):1127.
7 Morova N. Investigation of usability of basalt fibers in hot mix asphalt concrete[J]. Constr Build Mater,2013,47:175.
8 Greco A, Maffezzoli A, Casciaro G, et al. Mechanical properties of basalt fibers and their adhesion to polypropylene matrices[J]. Composites Part B: Eng,2014,67:233.
9 Fiore V, Scalici T, Dibella G, et al. A review on basalt fibre and its composites[J]. Composites Part B: Eng,2015,74:74.
10 Dhand V, Mittal G, Rhee K Y, et al. A short review on basalt fiber reinforced polymer composites[J]. Composites Part B: Eng,2015,73:166.
11 Dehkordi M T,Nosraty H, Shokrieh M M, et al. The influence of hybri-dization on impact damage behavior and residual compression strength of intraply basalt/nylon hybrid composites[J]. Mater Des,2013,43:283.
12 Wang M C, Zhang Z G, Sun Z J, et al. Corrosion resistance characteristic of continuous basalt fiber and its reinforcing composites[J]. J Beijing Univ Aeronaut Astronaut,2006,32(10):1255.
13 Bhat T, Chevali V, Liu X, et al. Fire structural resistance of basalt fibre composite[J]. Composites Part A: Appl Sci Manuf,2015,71:107.
14 Zhang X F, Liu Z J, Qian X M, et al. Study on modification of basalt fibers[J]. Adv Mater Res,2011,332:2028.
15 Wei B, Cao H L, Song S H. Surface modification and characterization of basalt fibers with hybrid sizings[J]. Composites Part A: Appl Sci Manuf,2011,42(1):22.
16 Shayed M A, Hund R D, Cherif C. Improvement of thermo-mechanical properties of basalt fiber using heat resistant polymeric coatings[J]. Fibers Polym,2014,15(10):2086.
17 Ye Guorui, Yan Yiwu, Cao Hailin. Basalt fiber modified with graphene oxide and properties of its reinforced epoxy composites[J]. Acta Mater Compos Sin,2014,31(6):1402 (in Chinese).
叶国锐, 晏义伍, 曹海琳. 氧化石墨烯改性玄武岩纤维及其增强环氧树脂复合材料性能[J]. 复合材料学报,2014,31(6):1402.
18 Brown E N, Davis A K, Jonnalagadda K D, et al. Effect of surface treatment on the hydrolytic stability of E-glass fiber bundle tensile strength[J]. Compos Sci Technol,2005,65(1):129.
19 Arkles B. Silane coupling agents: Connecting across boundaries[M]. Morrisville: Gelest,2004:1.
20 Blum F D.Silanecoupling agents[J].Encycl Polym Sci Technol,2002,8:30.
21 Plueddemann E P. Silane coupling agents[M]. America: SpringerScience & Business Media,2013.
22 Varley R J, Tian W, Leong K H, et al. The effect of surface treatments on the mechanical properties of basalt-reinforced epoxy composites[J]. Polym Compos,2013,34(3):320.
23 Choi S, Maul S, Stewart A, et al. Effect of silane coupling agent on the durability of epoxy adhesion for structural strengthening applications[J]. Polym Eng Sci,2013,53(2):283.
24 Xie Y J, Hill C A, Xiao Z F, et al. Silane coupling agents used for natural fiber/polymer composites: A review[J]. Composites Part A: Appl Sci Manuf,2010,41(7):806.
25 Xu J W, Wong C P. Characterization and properties of an organic-inorganic dielectric nanocomposite for embedded decoupling capacitor applications[J]. Composites Part A: Appl Sci Manuf,2007,38(1):13.
26 Zhou W Y. Effect of coupling agents on the thermal conductivity of aluminum particle/epoxy resin composites[J]. J Mater Sci,2011,46(11):3883.
27 Samper M D,Petrucci R, Sánchez-Nacher L, et al. Effect of silane coupling agents on basalt fiber-epoxidized vegetable oil matrix composite materials analyzed by the single fiber fragmentation technique[J]. Polym Compos,2015,36(7):1205.
28 Tábi T, Tamás P, Kovács J G. Chopped basalt fibres: A new perspective in reinforcing poly (lactic acid) to produce injection moulded engineering composites from renewable and natural resources[J]. Express Polym Lett,2012,7(2):107.
29 Espana J M, Samper M D, Fages E, et al. Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices[J]. Polym Compos,2013,34(3):376.
30 Kano-Ibarretxe J, Hernandez R, Mondragon I. Effect of different silane coupling agents on the tensile and flexural properties of basalt fibre-epoxy composites[C]// 15th European Conference on Compo-site Materials.Venice,2012:24.
31 Guo J, Mu S Y, Yu C F, et al. Mechanical and thermal properties of polypropylene/modified basalt fabric composites[J]. J Appl Polym Sci,2015,132(36):4250.
32 KurniawanD, Kim B S, Lee H Y, et al. Effect of silane treatment on mechanical properties of basalt fiber/polylactic acid ecofriendly composites[J]. Polym-Plast Technol Eng,2013,52(1):97.
33 Ying S N, Zhou X D. Basalt fibres/polystyrene interfacial adhesion through modification of basalt fibres by block copolymers[J]. Iran Polym J,2011,20:571.
34 Wu G, Wang X, et al. Durability of basalt fibers and composites in corrosive environments[J]. J Compos Mater,2014,0(0):1.
35 Manikandan V,Jappes J T, Kumar S M, et al. Investigation of the effect of surface modifications on the mechanical properties of basalt fibre reinforced polymer composites[J]. Composites Part B: Eng,2012,43(2):812.
36 Lee S O, Rhee K Y, Park S J. Influence of chemical surface treatment of basalt fibers on interlaminar shear strength and fracture toughness of epoxy-based composites[J]. J Ind Eng Chem,2015,32:153.
37 Lung C Y,Matinlinna J P. Aspects of silane coupling agents and surface conditioning in dentistry: An overview[J]. Dental Mater,2012,28(5):467.
38 Li Jing, Shen Shijie, Li Weina, et al. Effects of acid modification on coupling agent amount of basalt fiber surface and mechanical property of BF/epoxy composites[J]. Acta Mater Compos Sin,2014,31(4):888(in Chinese).
李静, 申士杰, 李伟娜, 等. 酸刻蚀对玄武岩纤维表面偶联剂吸附量及纤维/环氧树脂复合材料力学性能的影响[J]. 复合材料学报,2014,31(4):888.
39 Morent R, DeGeyter N, Verschuren J, et al. Non-thermal plasma treatment of textiles[J].Surf Coat Technol,2008,202(14):3427.
40 KurniawanD, Kim B S, Lee H Y, et al. Atmospheric pressure glow discharge plasma polymerization for surface treatment on sized basalt fiber/polylactic acid composites[J]. Composites Part B: Eng,2012,43(3):1010.
41 Liu Y,Xu H, Ge L, et al.Influence of environmental moisture on atmospheric pressure plasma jet treatment of ultrahigh-modulus polyethylene fibers[J]. J Adhes Sci Technol,2007,21(8):663.
42 Garifullin A R,Abdullin I S H, Skidchenko E A, et al. The effects of low-temperature plasma treatment on the capillary properties of inorganicfibers[J]. J Phys Conf,2016,669(1):012054.
43 Kim M T, Kim M H, Rhee K Y, et al. Study on an oxygen plasma treatment of a basalt fiber and its effect on the interlaminar fracture property of basalt/epoxy woven composites[J]. Composites Part B: Eng,2011,42(3):499.
44 Kurniawan D, Kim B S, Lee H Y, et al. Towards improving mechanical properties of basalt fiber/polylactic acid composites by fiber surface treatments[J]. Compos Interfaces,2015,22(7):553.
45 Wang G J, Liu Y W, Guo Y J, et al. Surface modification and characterizations of basalt fibers with non-thermal plasma[J]. Surf Coat Technol,2007,201(15):6565.
46 Jin Tingting, Shen Shijie, Li Jing, et al. Impact on the surface of basalt fiber and composite material properties of low-temperature plasma treatment[J]. Fiber Reinf Plast/Compos,2015(6):29(in Chinese).
靳婷婷, 申士杰, 李静, 等. 低温等离子处理对玄武岩纤维表面及复合材料性能的影响[J].玻璃钢/复合材料,2015(6):29.
47 Deák T,Czigány T, Tamás P, et al. Enhancement of interfacial properties of basalt fiber reinforced nylon 6 matrix composites with silane coupling agents[J]. Express Polym Lett,2010,4(10):590.
48 Lu G J, Wang W H,Shen S J. Mechanical properties of wood flour reinforced high density polyethylene composites with basalt fibers[J]. Mater Sci,2014,20(4):464.
49 Samper M D,Petrucci R, Sanchez-Nacher L, et al. Properties of composite laminates based on basalt fibers with epoxidized vegetable oils[J]. Mater Des,2015,72:9.
50 Wittek T, Tanimoto T. Mechanical properties and fire retardancy of bidirectional reinforced composite based on biodegradable starch resin and basalt fibres[J]. Composites,2008,11:13.
51 Xie K F, Liu H W, Hu W W, et al. Surface treatment of chopped basalt fibers and mechanical properties of wood-based composite[J]. Adv Mater Res,2012,627:796.
[1] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[2] 屈沅治, 张蝶, 兰雅婧, 任晗, 刘阔, 黄宏军, 梁本亮, 颜鲁婷. 水基钻井液用多元协同纳米润滑剂的研究进展[J]. 材料导报, 2025, 39(2): 23090016-6.
[3] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[4] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[5] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[6] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[7] 李鹏程, 魏嘉佳, 孟昊天, 王文轩, 李佳峻, 李达, 涂秋芬. 静电自组装法构建抗菌抗凝涂层的研究[J]. 材料导报, 2024, 38(14): 23020101-9.
[8] 刘筱涵, 杨培, 周晓燕. 等离子体改性增强农林生物质复合材料界面相容性研究进展[J]. 材料导报, 2024, 38(13): 23030072-11.
[9] 金磊源, 胡芳坤, 姜晓娇, 夏立, 刘冉, 徐佳乐, 涂秋芬, 熊开琴. 基于Notch信号通路抑制剂的多功能血管支架涂层制备及表征[J]. 材料导报, 2024, 38(12): 22120030-8.
[10] 苗世坦, 刘嘉麒, 郭玲, 刘忠, 丁宝明, 张蕾. 高温处理对玄武岩纤维抗拉强度和结构的影响[J]. 材料导报, 2024, 38(11): 22090168-6.
[11] 张伟钢, 李娇, 吕丹丹. 涂料助剂对PDMS改性环氧树脂/Al复合涂层性能的影响[J]. 材料导报, 2024, 38(10): 23010030-5.
[12] 杨长兴, 王固霞, 郭生伟. 油酸改性石墨相氮化碳的制备、表征及摩擦学性能研究[J]. 材料导报, 2023, 37(23): 22100019-7.
[13] 于本田, 杨玉祥, 刘江, 王永刚, 王朋勇, 谢超. 改性SiO2气凝胶水泥基复合砂浆性能及冻融损伤研究[J]. 材料导报, 2023, 37(23): 22040197-6.
[14] 张文雅, 周健, 李辉, 徐名凤. 轻质玄武岩纤维高延性水泥基复合材料研制及导热性能研究[J]. 材料导报, 2023, 37(20): 22040279-6.
[15] 郑洋, 张璇, 卢佳, 何东磊, 宿振宇, 牛伟, 于镇洋, 孙荣禄, 李岩. 医用镁合金体内降解行为与表面改性研究进展[J]. 材料导报, 2023, 37(19): 22020134-16.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed