Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (5): 77-83    https://doi.org/10.11896/j.issn.1005-023X.2017.05.013
  材料综述 |
硅烷偶联剂表面改性玄武岩纤维增强复合材料研究进展*
王晓东, 云斯宁, 张太宏, 尹洪峰, 徐德龙
西安建筑科技大学材料与矿资学院,西安 710055
Advances in Basalt Fiber-reinforced Composites Modified by Silane Coupling Agents
WANG Xiaodong, YUN Sining, ZHANG Taihong, YIN Hongfeng, XU Delong
School of Materials and Mineral Resources, Xi’an University of Architecture and Technology, Xi’an 710055
下载:  全 文 ( PDF ) ( 1906KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 表面改性是增强玄武岩纤维与基体材料之间结合性能的关键。综述了硅烷偶联剂表面改性以及酸、碱刻蚀,等离子处理辅助协同硅烷偶联剂表面改性玄武岩纤维的研究进展,介绍了硅烷偶联剂表面改性玄武岩纤维在聚合物基复合材料中的应用,并对发展趋势进行了展望,同时分析了硅烷偶联剂表面改性玄武岩纤维当前存在的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晓东
云斯宁
张太宏
尹洪峰
徐德龙
关键词:  玄武岩纤维  表面改性  硅烷偶联剂  酸、碱刻蚀  等离子处理    
Abstract: Surface modification is a key technique for enhancing the binding properties between basalt fiber reinforcement and matrix material. This paper reviews the recent progress in pre-modification of basalt fibers by using silane coupling agents, and using silane coupling agents with the assistance of acid/alkaline etching or the assistance of plasma. The application of silane coupling agents treated basalt fiber in polymer matrix composites is highlighted, and the future development of silane coupling agents treated basalt fiber-reinforced composites is prospected. Also, the key issues at present stage are analyzed.
Key words:  basalt fiber    surface modification    silane coupling agent    acid/alkaline etching    plasma treatment
               出版日期:  2017-03-10      发布日期:  2018-05-02
ZTFLH:  TB332  
  TB321  
基金资助: 国家科技支撑计划(2012BAD47B02);陕西省科技厅项目(2011JM6010;2015JM5183);陕西省教育厅项目(2013JK0927)
通讯作者:  云斯宁:,男,1974年生,博士,教授,博士研究生导师,主要从事资源循环化综合利用的研究 E-mail:alexsyun1974@aliyun.com   
作者简介:  王晓东:男,1990年生,硕士研究生,研究方向为资源循环化综合利用
引用本文:    
王晓东, 云斯宁, 张太宏, 尹洪峰, 徐德龙. 硅烷偶联剂表面改性玄武岩纤维增强复合材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 77-83.
WANG Xiaodong, YUN Sining, ZHANG Taihong, YIN Hongfeng, XU Delong. Advances in Basalt Fiber-reinforced Composites Modified by Silane Coupling Agents. Materials Reports, 2017, 31(5): 77-83.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.05.013  或          http://www.mater-rep.com/CN/Y2017/V31/I5/77
1 Wei B, Cao H L, Song S H. Tensile behavior contrast of basalt and glass fibers after chemical treatment[J]. Mater Des,2010,31(9):4244.
2 Manylov M S,Gutnikov S I, Lipatov A P, et al. Effect of deferrization on continuous basalt fiber properties[J]. Mendeleev Commun,2015,25(5):386.
3 Singha K. A short review on basalt fiber[J]. Int J Text Sci,2012,1(4):19.
4 Zhang Y H, Yu C X, Chu P K, et al. Mechanical and thermal properties of basalt fiber reinforced poly(butylene succinate) composites[J]. Mater Chem Phys,2012,133(2-3):845.
5 King M, SrinivasanV, Purushothaman T. Basalt fiber an ancient material for innovative and modern application[J]. Middle-East J Sci Res,2014,22(2):308.
6 Ye Bangtu, Sun Wei, Jiang Jinyang, et al. Long-term performances and defects of basalt fiber reinforced cement paste with fly ash[J]. J Chin Ceram Soc,2012,40(8):1127 (in Chinese).
叶邦土, 孙伟, 蒋金洋, 等. 玄武岩纤维增强粉煤灰水泥浆体的耐久性及缺陷分析[J]. 硅酸盐学报,2012,40(8):1127.
7 Morova N. Investigation of usability of basalt fibers in hot mix asphalt concrete[J]. Constr Build Mater,2013,47:175.
8 Greco A, Maffezzoli A, Casciaro G, et al. Mechanical properties of basalt fibers and their adhesion to polypropylene matrices[J]. Composites Part B: Eng,2014,67:233.
9 Fiore V, Scalici T, Dibella G, et al. A review on basalt fibre and its composites[J]. Composites Part B: Eng,2015,74:74.
10 Dhand V, Mittal G, Rhee K Y, et al. A short review on basalt fiber reinforced polymer composites[J]. Composites Part B: Eng,2015,73:166.
11 Dehkordi M T,Nosraty H, Shokrieh M M, et al. The influence of hybri-dization on impact damage behavior and residual compression strength of intraply basalt/nylon hybrid composites[J]. Mater Des,2013,43:283.
12 Wang M C, Zhang Z G, Sun Z J, et al. Corrosion resistance characteristic of continuous basalt fiber and its reinforcing composites[J]. J Beijing Univ Aeronaut Astronaut,2006,32(10):1255.
13 Bhat T, Chevali V, Liu X, et al. Fire structural resistance of basalt fibre composite[J]. Composites Part A: Appl Sci Manuf,2015,71:107.
14 Zhang X F, Liu Z J, Qian X M, et al. Study on modification of basalt fibers[J]. Adv Mater Res,2011,332:2028.
15 Wei B, Cao H L, Song S H. Surface modification and characterization of basalt fibers with hybrid sizings[J]. Composites Part A: Appl Sci Manuf,2011,42(1):22.
16 Shayed M A, Hund R D, Cherif C. Improvement of thermo-mechanical properties of basalt fiber using heat resistant polymeric coatings[J]. Fibers Polym,2014,15(10):2086.
17 Ye Guorui, Yan Yiwu, Cao Hailin. Basalt fiber modified with graphene oxide and properties of its reinforced epoxy composites[J]. Acta Mater Compos Sin,2014,31(6):1402 (in Chinese).
叶国锐, 晏义伍, 曹海琳. 氧化石墨烯改性玄武岩纤维及其增强环氧树脂复合材料性能[J]. 复合材料学报,2014,31(6):1402.
18 Brown E N, Davis A K, Jonnalagadda K D, et al. Effect of surface treatment on the hydrolytic stability of E-glass fiber bundle tensile strength[J]. Compos Sci Technol,2005,65(1):129.
19 Arkles B. Silane coupling agents: Connecting across boundaries[M]. Morrisville: Gelest,2004:1.
20 Blum F D.Silanecoupling agents[J].Encycl Polym Sci Technol,2002,8:30.
21 Plueddemann E P. Silane coupling agents[M]. America: SpringerScience & Business Media,2013.
22 Varley R J, Tian W, Leong K H, et al. The effect of surface treatments on the mechanical properties of basalt-reinforced epoxy composites[J]. Polym Compos,2013,34(3):320.
23 Choi S, Maul S, Stewart A, et al. Effect of silane coupling agent on the durability of epoxy adhesion for structural strengthening applications[J]. Polym Eng Sci,2013,53(2):283.
24 Xie Y J, Hill C A, Xiao Z F, et al. Silane coupling agents used for natural fiber/polymer composites: A review[J]. Composites Part A: Appl Sci Manuf,2010,41(7):806.
25 Xu J W, Wong C P. Characterization and properties of an organic-inorganic dielectric nanocomposite for embedded decoupling capacitor applications[J]. Composites Part A: Appl Sci Manuf,2007,38(1):13.
26 Zhou W Y. Effect of coupling agents on the thermal conductivity of aluminum particle/epoxy resin composites[J]. J Mater Sci,2011,46(11):3883.
27 Samper M D,Petrucci R, Sánchez-Nacher L, et al. Effect of silane coupling agents on basalt fiber-epoxidized vegetable oil matrix composite materials analyzed by the single fiber fragmentation technique[J]. Polym Compos,2015,36(7):1205.
28 Tábi T, Tamás P, Kovács J G. Chopped basalt fibres: A new perspective in reinforcing poly (lactic acid) to produce injection moulded engineering composites from renewable and natural resources[J]. Express Polym Lett,2012,7(2):107.
29 Espana J M, Samper M D, Fages E, et al. Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices[J]. Polym Compos,2013,34(3):376.
30 Kano-Ibarretxe J, Hernandez R, Mondragon I. Effect of different silane coupling agents on the tensile and flexural properties of basalt fibre-epoxy composites[C]// 15th European Conference on Compo-site Materials.Venice,2012:24.
31 Guo J, Mu S Y, Yu C F, et al. Mechanical and thermal properties of polypropylene/modified basalt fabric composites[J]. J Appl Polym Sci,2015,132(36):4250.
32 KurniawanD, Kim B S, Lee H Y, et al. Effect of silane treatment on mechanical properties of basalt fiber/polylactic acid ecofriendly composites[J]. Polym-Plast Technol Eng,2013,52(1):97.
33 Ying S N, Zhou X D. Basalt fibres/polystyrene interfacial adhesion through modification of basalt fibres by block copolymers[J]. Iran Polym J,2011,20:571.
34 Wu G, Wang X, et al. Durability of basalt fibers and composites in corrosive environments[J]. J Compos Mater,2014,0(0):1.
35 Manikandan V,Jappes J T, Kumar S M, et al. Investigation of the effect of surface modifications on the mechanical properties of basalt fibre reinforced polymer composites[J]. Composites Part B: Eng,2012,43(2):812.
36 Lee S O, Rhee K Y, Park S J. Influence of chemical surface treatment of basalt fibers on interlaminar shear strength and fracture toughness of epoxy-based composites[J]. J Ind Eng Chem,2015,32:153.
37 Lung C Y,Matinlinna J P. Aspects of silane coupling agents and surface conditioning in dentistry: An overview[J]. Dental Mater,2012,28(5):467.
38 Li Jing, Shen Shijie, Li Weina, et al. Effects of acid modification on coupling agent amount of basalt fiber surface and mechanical property of BF/epoxy composites[J]. Acta Mater Compos Sin,2014,31(4):888(in Chinese).
李静, 申士杰, 李伟娜, 等. 酸刻蚀对玄武岩纤维表面偶联剂吸附量及纤维/环氧树脂复合材料力学性能的影响[J]. 复合材料学报,2014,31(4):888.
39 Morent R, DeGeyter N, Verschuren J, et al. Non-thermal plasma treatment of textiles[J].Surf Coat Technol,2008,202(14):3427.
40 KurniawanD, Kim B S, Lee H Y, et al. Atmospheric pressure glow discharge plasma polymerization for surface treatment on sized basalt fiber/polylactic acid composites[J]. Composites Part B: Eng,2012,43(3):1010.
41 Liu Y,Xu H, Ge L, et al.Influence of environmental moisture on atmospheric pressure plasma jet treatment of ultrahigh-modulus polyethylene fibers[J]. J Adhes Sci Technol,2007,21(8):663.
42 Garifullin A R,Abdullin I S H, Skidchenko E A, et al. The effects of low-temperature plasma treatment on the capillary properties of inorganicfibers[J]. J Phys Conf,2016,669(1):012054.
43 Kim M T, Kim M H, Rhee K Y, et al. Study on an oxygen plasma treatment of a basalt fiber and its effect on the interlaminar fracture property of basalt/epoxy woven composites[J]. Composites Part B: Eng,2011,42(3):499.
44 Kurniawan D, Kim B S, Lee H Y, et al. Towards improving mechanical properties of basalt fiber/polylactic acid composites by fiber surface treatments[J]. Compos Interfaces,2015,22(7):553.
45 Wang G J, Liu Y W, Guo Y J, et al. Surface modification and characterizations of basalt fibers with non-thermal plasma[J]. Surf Coat Technol,2007,201(15):6565.
46 Jin Tingting, Shen Shijie, Li Jing, et al. Impact on the surface of basalt fiber and composite material properties of low-temperature plasma treatment[J]. Fiber Reinf Plast/Compos,2015(6):29(in Chinese).
靳婷婷, 申士杰, 李静, 等. 低温等离子处理对玄武岩纤维表面及复合材料性能的影响[J].玻璃钢/复合材料,2015(6):29.
47 Deák T,Czigány T, Tamás P, et al. Enhancement of interfacial properties of basalt fiber reinforced nylon 6 matrix composites with silane coupling agents[J]. Express Polym Lett,2010,4(10):590.
48 Lu G J, Wang W H,Shen S J. Mechanical properties of wood flour reinforced high density polyethylene composites with basalt fibers[J]. Mater Sci,2014,20(4):464.
49 Samper M D,Petrucci R, Sanchez-Nacher L, et al. Properties of composite laminates based on basalt fibers with epoxidized vegetable oils[J]. Mater Des,2015,72:9.
50 Wittek T, Tanimoto T. Mechanical properties and fire retardancy of bidirectional reinforced composite based on biodegradable starch resin and basalt fibres[J]. Composites,2008,11:13.
51 Xie K F, Liu H W, Hu W W, et al. Surface treatment of chopped basalt fibers and mechanical properties of wood-based composite[J]. Adv Mater Res,2012,627:796.
[1] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[2] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[3] 程国君, 产爽爽, 陈晨, 钱家盛, 丁国新, 王周锋. 改性剂对TiN/PS纳米复合材料流变行为的影响[J]. 材料导报, 2019, 33(14): 2444-2449.
[4] 邵明增, 崔春娟, 杨洪波. 医用NiTi形状记忆合金表面氧化改性研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1181-1186.
[5] 沈海洋, 王正洲. 钢渣的表面改性及其在橡胶中应用研究[J]. 材料导报, 2018, 32(6): 1000-1003.
[6] 叶恩淦, 王海波, 朱月华, 蒋利华, 卓宁泽. 复配稀土改性剂对MGF/PTFE复合材料性能的影响[J]. 材料导报, 2018, 32(6): 961-964.
[7] 吴家宇, 李丹, 康龙, 冉奋. 电化学诱导表面引发原子转移自由基聚合构筑离子型聚醚砜膜功能表面[J]. 《材料导报》期刊社, 2018, 32(4): 549-554.
[8] 胡晶, 谢国治, 顾家新, 谌静, 谭鑫, 王瑞, 邢贝贝. 多元助剂改性羰基铁粉雷达波低频吸波性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 520-524.
[9] 刘伟东, 张旭, 屈华. FeB和Fe2B价电子结构与钢表面渗硼层硬化本质[J]. 《材料导报》期刊社, 2018, 32(4): 672-675.
[10] 费志方, 李昆锋, 杨自春, 高文杰, 陈国兵. APTES交联型聚酰亚胺气凝胶的制备与表征[J]. 材料导报, 2018, 32(20): 3623-3627.
[11] 黄全江,南君,王三反,李欣怡,邹信,张学敏. 苯磺酸甜菜碱表面改性阳离子交换膜[J]. 《材料导报》期刊社, 2018, 32(2): 203-206.
[12] 杨平军,袁剑民,何莉萍. 碳纤维表面改性及其对碳纤维/树脂界面影响的研究进展[J]. 《材料导报》期刊社, 2017, 31(7): 129-136.
[13] 张勇,王雄禹,于静,曹维成,冯鹏发,焦生杰. 高温应用钼及钼合金表面改性研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 83-87.
[14] 沈佳丽, 石畅, 施冬健, 章朱迎, 陈明清. 多巴胺对骨修复材料表面改性的研究进展[J]. 《材料导报》期刊社, 2017, 31(21): 54-61.
[15] 毕玉保, 王慧芳, 赵万国, 梁峰, 张海军. 含碳浇注料用鳞片石墨的表面改性技术综述*[J]. 《材料导报》期刊社, 2017, 31(15): 108-114.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed