Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (5): 72-76    https://doi.org/10.11896/j.issn.1005-023X.2017.05.012
  材料综述 |
钛合金中ω相变的研究进展*
林成1, 于佳石1, 尹桂丽1, 张爱民1, 赵志伟1, 黄士星1, 赵永庆2, 郭丽丽3
1 辽宁工业大学材料科学与工程学院,锦州 121001;
2 西北有色金属研究院,西安 710016;
3 锦州锦恒汽车安全系统有限公司,锦州 121007
Omega Phase Transformation in Titanium Alloys: A Review
LIN Cheng1, YU Jiashi1, YIN Guili1, ZHANG Aimin1, ZHAO Zhiwei1,
HUANG Shixing1, ZHAO Yongqing2, GUO Lili3
1 College of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001;
2 Northwest Institute for Nonferrous Metal Research, Xi’an 710016;
3 Jinzhou Jinheng Automotive Safety System Co.Ltd, Jinzhou 121007
下载:  全 文 ( PDF ) ( 1587KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钛合金中的ω相及其相变对合金的组织性能影响较大,因此近年来ω相变也成为钛合金研究中的热点问题之一。从ω相的形成、分解、组织形貌以及ω相辅助α形核的角度总结归纳了相关研究报道,对比了相关模型观点的优缺点,阐述了ω相目前仍存在的学术分歧。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林成
于佳石
尹桂丽
张爱民
赵志伟
黄士星
赵永庆
郭丽丽
关键词:  钛合金  相变  ω相  ω相辅助形核    
Abstract: The ω phase and its phase transformation in titanium alloys have great influence on the microstructure and properties of the alloys. Therefore, the study of ω phase transformation in titanium alloys becomes one of the hot issues in recent years. In this paper, the related research reports are summarized, including ω phase formation, ω phase decomposition, ω phase morphology and ω -assisted α nucleation. The advantages and disadvantages of the related models are compared, and some scientific problems with academic disputations are expounded.
Key words:  titanium alloy    phase transformation    ω phase    ω-assisted nucleation
出版日期:  2017-03-10      发布日期:  2018-05-02
ZTFLH:  TB31  
基金资助: 国家自然科学基金(51201084);辽宁省自然科学基金(SY2016006)
作者简介:  林成:男,1979年生,博士,副教授,主要从事计算材料学和钛合金、钢铁材料组织性能的研究 E-mail: Cheng_lin1979@163.com
引用本文:    
林成, 于佳石, 尹桂丽, 张爱民, 赵志伟, 黄士星, 赵永庆, 郭丽丽. 钛合金中ω相变的研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 72-76.
LIN Cheng, YU Jiashi, YIN Guili, ZHANG Aimin, ZHAO Zhiwei, HUANG Shixing, ZHAO Yongqing, GUO Lili. Omega Phase Transformation in Titanium Alloys: A Review. Materials Reports, 2017, 31(5): 72-76.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.05.012  或          https://www.mater-rep.com/CN/Y2017/V31/I5/72
1 Banerjee D, William J C. Perspectives on titanium science and technology [J]. Acta Mater, 2013,61(3):844.
2 Tegner B E, Zhu L G, Ackland G J. Relative strength of phase stabilizers in titanium alloys [J]. Phys Rev B,2012,85:214106.
3 Devaraj A, Nag S, Banerjee R. Alpha phase precipitation from phase-separated beta phase in a model Ti-Mo-Al alloy studied by direct coupling of transmission electron microscopy and atom probe tomography[J]. Scr Mater,2013,69(7):513.
4 Kobayashi S, Takeichi T, Nakai K, et al. Acceleration or suppression of α-phase precipitation using isothermal ω phase in Ti-20 at.pct Nb alloy[J]. Metall Mater Trans A,2014,45(3):1217.
5 Santhosh R, Geetha M, Saxena V K, et al. Studies on single and duplex aging of metastable beta titanium alloy Ti-15V-3Cr-3Al-3Sn [J]. J Alloys Compd,2014,605(8):222.
6 Zhang L C, Zhou T, et al. Nucleation of stress-induced martensites in a Ti/Mo-based alloy [J]. J Mater Sci,2005,40 (11):2833.
7 赵永庆, 陈永楠, 张学敏,等. 钛合金相变及热处理[M]. 长沙: 中南大学出版社, 2012.
8 Zhang Tingjie. Transition electronic microscope studies on titanium alloy phase (Ⅳ)——Omega phase transformation of titanium alloy [J]. Rare Metal Mater Eng,1989,18(5):77(in Chinese).
张廷杰. 钛合金相变的电子显微镜研究(Ⅳ)——钛合金中的ω相变[J]. 稀有金属材料工程,1989,18(5):77.
9 Azmzadeh S, Rack H J. Phase transformations in Ti-6.8Mo-4.5Fe-1.5Al [J]. Metall Mater Trans A,1998,29(10):2455.
10 Xing H, Sun J. Mechanical twinning and omega transition by 〈111〉{112} shear in a metastable β titanium alloy [J]. Appl Phys Lett,2008,93:031908.
11 Ohmori Y, Ogo T, Nakai K, et al. Effects of ω-phase precipitation on β→α, α′′ transformations in a metastable β titanium alloy [J]. Mater Sci Eng A,2001,312(1-2):182.
12 Yeddu H K, Zong H X, Lookman T. Alpha-omega and omega-alpha phase transformations in zirconium under hydrostatic pressure: A 3D mesoscale study[J]. Acta Mater,2016,102:97.
13 Dubinskiy S,Korotitskiy A,Prokoshkin S,et al.In situ X-ray diffraction study of athermal and isothermal omega-phase crystal lattice in Ti-Nb-based shape memory alloys [J]. Mater Lett,2016,163:155.
14 Silcock J M. An X-ray examination of the to phase in TiV, TiMo and TiCr alloys[J]. Acta Metall,1958,6(7):481.
15 Duerig T W, Terlinde G T, Willams J C. Phase transformations and tensile properties of Ti-10V-2Fe-3Al [J]. Metall Mater Trans A,1980,11(12):1987A.
16 Fontaine D de, Paton N E, Williams J C. The omega phase transformation in titanium alloys as an example of displacement controlled reactions [J]. Acta Metall,1971,19(11):1153.
17 Fontaine D de. Simple models for the omega phase transformation [J]. Metall Trans A,1998,19A(11):169.
18 Cook H E. A theory of the omega transformation [J]. Acta Metall,1974,22(2):239.
19 Tewari R, Srivastava D, Dey G K, et al. Microstructural evolution in zirconium based alloys[J]. J Nuclear Mater,2008,383(1-2):153.
20 Lin C, Yin G L, Zhang A M, et al. Simple models to account for the formation and decomposition of athermal omega phase in titanium alloys [J]. Scr Mater,2016,117(5):28.
21 Prima F, Debuigne J, Boliveau M, et al. Control of omega phase volume fraction precipitated in a beta titanium alloy: Development of an experimental method [J]. J Mater Sci Lett,2000,19:2219.
22 Devaraj A, Nag S, Srinivasan R, et al. Experimental evidence of concurrent compositional and structural instabilities leading to ω precipitation in titanium-molybdenum alloys [J]. Acta Mater,2012,60(2):596.
23 Hanada S, Ozeki M, Izumi O. Deformation characteristics in β phase Ti-Nb alloys [J]. Metall Trans A,1985,16(5):789.
24 Hanada S, Izumi O. Transmission electron microscopic observations of mechanical twinning in metastable beta titanium alloys [J]. Metall Trans A,1986,17(8):1409.
25 Oka M, Taniguchi Y. {332} deformation twins in a Ti-15.5 pct V alloy [J]. Metall Trans A,1979,10(5):651.
26 Wang X L, Li L, Mei W, et al. Dependence of stress-induced omega transition and mechanical twinning on phase stability in metastable β-Ti-V alloys [J]. Mater Charact,2015,107(9):149.
27 Wang X L, Li L, Xing H, et al. Role of oxygen in stress-induced ω phase transformation and {332}〈113〉mechanical twinning in βTi-20V alloy [J]. Scr Mater,2015,96(2):37.
28 Chang Hui, Zhou Lian, Zhang Tingjie. Review of solid phase transformation in titanium alloys[J]. Rare Metal Mater Eng,2007,36(9):1505(in Chinese).
常辉, 周廉, 张廷杰. 钛合金固态相变的研究进展[J]. 稀有金属材料与工程, 2007, 36(9): 1505
29 Kim S H, Kang S J, Park M H, et al. Vacancy-mediated ω-assisted α-phase formation mechanism in titanium-molybdenum alloy [J]. Acta Mater,2015,83:499.
30 Qiu D, Zhang M X, Kelly P, et al. Discovery of plate-shaped athermal ω phase forming pairs with α′ martensite in a Ti-5.26 wt.% Cr alloy[J]. Scripta Mater,2013,69(10):752.
31 Sun F, Prima F, Gloriant T. High-strength nanostructured Ti-12Mo alloy from ductile metastable beta state precursor [J]. Mater Sci Eng A,2010,527(16-17):4262.
32 Zheng Y F, Williams R E A, Wang D, et al. Role of ω phase in the formation of extremely refined intragranular α precipitates in metastable β-titanium alloys[J]. Acta Mater,2016,103:850.
33 Zhou Z B, Lai M J, Tang B, et al. Non-isothermal phase transformation kinetics of ω phase in TB-13 titanium alloys [J]. Mater Sci Eng A,2010,527(20):5100.
34 Xu W, Wu X, Stocia M, et al. On the formation of an ultrafine-duplex structure facilitated by severe shear deformation in Ti-20Mo β-type titanium alloy [J]. Acta Mater,2012,60(13-14):5067.
35 Nag S, Banerjee R, Srinivasan R,et al. ω-Assisted nucleation and growth of α precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β titanium alloy[J]. Acta Mater,2009,57(7):2136.
36 Furuhara T, Maki T, Makino T. Microstructure control by thermomechanical processing in β-Ti-15-3 alloy [J]. J Mater Process Technol, 2001,117(3):318.
37 Prima F, Vermaut P, Texier G, et al. Evidence of α-nanophase heterogeneous nucleation from ω particles in a β-metastable Ti-based alloy by high-resolution electron microscopy [J]. Scripta Mater,2006,54(4):645.
[1] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[2] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[3] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[4] 范浩博, 豆书亮, 李垚. 二氧化钒智能热控涂层光学结构原理及研究进展[J]. 材料导报, 2025, 39(1): 24100229-10.
[5] 焦纪强, 蒙峻, 谢文君, 刘建龙, 魏宁斐, 罗成, 郭方准, 王润成. 超高真空环境下TC4钛合金和ZrO2陶瓷的出气性能研究[J]. 材料导报, 2025, 39(1): 23090126-5.
[6] 陈琛, 陈昱林, 苏璇, 卢璟钰, 于俊杰, 张建, 吉卫喜. Al-Zn体系高压扭转过程中的相变机理[J]. 材料导报, 2024, 38(9): 22120148-6.
[7] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[8] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[9] 王丽红, 满蛟, 姜一鸣, 刘庚根, 周建平. 外加载荷对热弹性马氏体正-逆相变影响机制的相场模拟研究[J]. 材料导报, 2024, 38(8): 22070156-7.
[10] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[11] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[12] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[13] 成鑫磊, 穆锐, 孙涛, 刘元雪, 胡志德, 蒋昊洋. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报, 2024, 38(5): 23080048-15.
[14] 范晓燕, 赵雪婷, 欧志强. 塑晶材料及其压卡效应研究发展与展望[J]. 材料导报, 2024, 38(5): 22080087-8.
[15] 赵荣, 韩子夜, 吴飞翔, 刘太奇, 李谭秋. 基于十水硫酸钠的个体防护材料的制备及性能[J]. 材料导报, 2024, 38(3): 22090074-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed