Study on Properties and Freeze-thaw Deterioration of Modified SiO2 Aerogel Cement-based Composite Mortar
YU Bentian1,*, YANG Yuxiang1, LIU Jiang2, WANG Yonggang2, WANG Pengyong2, XIE Chao1
1 School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China 2 The 2nd Engineering Co., Ltd., of China Railway 21st Bureau Group, Lanzhou 730000, China
Abstract: The surface modification of SiO2 aerogel particles was carried out by using KH570 silane coupling agent, and the modified SiO2 aerogel was mixed into the cement mortar by using the method of equal volume replacement sand to prepare the modified aerogel cement-based composite mortar. The dry density, flexural and compressive strength, thermal conductivity and pore structure of cementitious composite mortars with different SiO2 aerogel admixtures were tested. The rapid freeze-thaw cycle test of cementitious composite mortar was carried out, and the influence laws of freeze-thaw cycle on compressive strength, dynamic elastic modulus and thermal conductivity were analyzed, and the mechanism of deterioration of modified SiO2 aerogel cementitious composite mortar by freeze-thaw cycle was revealed by electron scanning electron microscopy (SEM). The results show that the SiO2 aerogel particles modified by KH570 can be more completely embedded in the cement mortar, thus improving the pore structure of SiO2 aerogel mortar. With the increase of the replacement ratio of modified SiO2 aerogel, the dry density, compressive and flexural strength, and thermal conductivity of cementitious composite mortar decreased significantly, while the porosity decreased first and then increased. When the replacement ratio was 40%, the thermal conductivity decreased by 46%, the flexural strength decreased by 43%, the compressive strength decreased by 68%, and the porosity increased by 49%. SiO2 aerogel can improve the frost resistance of cement mortar, but with the growth of the number of freeze-thaw cycles, the interfacial damage of SiO2 aerogel particles and cementitious materials is the main reason for its deterioration.
1 Gabriel Samson, Annabelle Phelipot-Mardelé, Christophe Lanos. Magazine of Concrete Research, 2017, 69(4),201. 2 Qian B Z, Zhu J F. Building Energy Efficiency, 2009, 37(2),56 (in Chinese). 钱伯章, 朱建芳.建筑节能, 2009, 37(2),56. 3 Liu Z Y. Study on thermal performance of aerogel foamed concrete and its influencing factors. Master's Thesis, Guangzhou University, China, 2021, (in Chinese). 刘振宇. 气凝胶泡沫混凝土的热工性能及其影响因素研究.硕士学位论文,广州大学,2021. 4 Tao Gao, Bjørn Petter Jelle, Arild Gustavsen, et al. Construction and Building Materials, 2014, 52,130. 5 Wang Z J, Lu G Z, He G M, et al. New Building Materials, 2022, 49(1),124(in Chinese). 王肇嘉, 路国忠, 何光明, 等.新型建筑材料,2022, 49(01),124. 6 Wei H J, Chen J L, Ma H Y, et al. New Chemical Materials, 2021, 49(S1),248(in Chinese) 魏慧娟, 陈九龙, 马海燕, 等.化工新型材料, 2021, 49(S1),248. 7 Wang X G, Cheng G, Zhang W J. China Concrete and Cement Products, 2019(12),70(in Chinese). 王修贵, 程功, 张文静.混凝土与水泥制品, 2019(12),70. 8 Sehaqui H, Qi Z, Berglund L A. Composites Science and Technology, 2011, 71,1593. 9 Liu M Y. Efficient preparation and application of graphene oxide based aerogel particles. Master's Thesis, Tiangong University, China, 2019 (in Chinese). 刘明禹. 氧化石墨烯基气凝胶颗粒的高效制备与应用研究. 硕士学位论文,天津工业大学, 2019. 10 Yoon Jae Lee, Ji Chul Jung, Jongheop Yi, et al. Current Applied Physics, 2010, 10,682. 11 Feng J C, Wang Y R, Geng J, et al. Concrete, 2018(4),110(in Chinese). 封金财, 王怡人, 耿犟, 等.混凝土, 2018(4),110. 12 Shen J, Wang G Q, Wang Q, et al. Journal of Tongji University(Natural Science), 2004, 32(8), 1106(in Chinese). 沈军, 汪国庆, 王巧, 等.同济大学学报(自然科学版), 2004, 32(8), 1106. 13 Zhang Z, Wang X D, Shen J. Journal of Inorganic Materials, 2020, 35(4), 454(in Chinese). 张泽, 王晓栋, 沈军. 无机材料学报, 2020, 35(4), 454. 14 Soleimani Dorcheh A, Abbasi M H. Journal of Materials Processing Technology, 2008, 199,10. 15 Wang B Y, Zhang S M, Lan Y S, et al. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2010,37(5),30(in Chinese). 王宝玉,张苏明,兰玉顺, 等. 北京化工大学学报(自然科学版), 2010,37(5),30. 16 Liu Z H, Ding Y D, Wang F, et al. Equipment Environmental Enginee-ring, 2017, 14(1),71(in Chinese). 刘朝辉, 丁逸栋, 王飞, 等. 装备环境工程, 2017, 14(1),71. 17 Xu L P. Influence and reciprocal effects of vegetation rehabilitation on regional climate in loess plateau. Ph.D. Thesis, Northwest A&F University, China, 2008 (in Chinese). 徐丽萍. 黄土高原地区植被恢复对气候的影响及其互动效应. 博士学位论文,西北农林科技大学, 2008. 18 Yin M. The Adhensive effect of exterior wall insulation board layer and structure layer under freezing-thawing cycles. Master's Thesis, Xi'an Technological University, China, 2017 (in Chinese). 殷明. 冻融循环对外墙保温板与结构层粘结性能的影响. 硕士学位论文,西安工业大学,2017 (in Chinese). 19 Zhu Pinghua, Yu Shuqi, Cheng Cheng, et al. Advances in Cement Research, 2020, 32(12),527. 20 Dong J M, Ma M B. Concrete, 2011(4),95(in Chinese). 董健苗, 马铭彬.混凝土, 2011(4),95. 21 Kadum Al Z I, Bilal D, Cengiz D A, et al. Structural Concrete, 2019, 21,1. 22 GB/T 5486-2008, Test methods for inorganic rigid thermal insulation(in Chinese). GB/T 5486-2008,无机硬质绝热制品试验方法. 23 GB/T 17671-1999, Method of testing cements-determination of strength (in Chinese). GB/T 17671-1999,水泥胶砂强度检验方法(ISO法). 24 GB/T 50082-2009, Standard for test methods of long-term performance and durability of ordinary concrete(in Chinese). GB/T 50082-2009,普通混凝土长期性能和耐久性能试验方法标准. 25 Wang F, Liu Z H, Deng Z P, et al. Journal of Functional Materials, 2016, 47(4),4064(in Chinese). 王飞, 刘朝辉, 邓智平, 等.功能材料, 2016, 47(4),4064. 26 Zhang M. Acta Materiae Compositae Sinica, 2020(11),2674(in Chinese). 张明.复合材料学报, 2020(11),2674. 27 Ma S Y, Zheng S H, Guo H N, et al. Journal of Materials Engineering, 2008(10), 366(in Chinese). 马士玉, 郑少华, 郭洪娜, 等.材料工程, 2008(10), 366. 28 Li F P. Study on properties and mechanism of organic silicon modified cement mortar. Master's Thesis, Wuhan Polytechnic University, China, 2019 (in Chinese). 李发平. 有机硅改性水泥砂浆性能及机理研究. 硕士学位论文,武汉轻工大学, 2019. 29 Lu J. Preparation and properties of cement-based porous materials based on SiO2. Master's Thesis, Southwest University of Science and Technology, China, 2020 (in Chinese). 路珏. 基于SiO2的水泥基多孔材料制备及性能. 硕士学位论文,西南科技大学, 2020. 30 Lu Jue, Jiang Jun, Lu Zhongyuan, et al. Construction and Building Materials, 2020, 245,118434. 31 Li H, Guo H L, Zhang Y. Building Structure, 2020, 50(24),116(in Chinese). 李昊, 郭皓隆, 张园.建筑结构, 2020, 50(24),116. 32 Yu L, Zhang J, Zhang J X, et al. Journal of Harbin Engineering University, 2015(11), 1459(in Chinese). 于蕾, 张君, 张金喜, 等.哈尔滨工程大学学报, 2015(11), 1459. 33 Guo Y C, Huang Z C, Wang W Z, et al. Journal of Building Materials, 2022, 25(1),16(in Chinese). 郭寅川, 黄忠财, 王文真, 等.建筑材料学报, 2022, 25(1),16. 34 Levent Bostanci. Journal of Building Engineering, 2020, 31,101478. 35 Chen M, Wang R Y, Cheng G, et al. Materials Reports, 2014,28(22),89(in Chinese). 陈苗,王如意,成功,等. 材料导报, 2014,28(22),89.