Please wait a minute...
材料导报  2023, Vol. 37 Issue (23): 22040197-6    https://doi.org/10.11896/cldb.22040197
  无机非金属及其复合材料 |
改性SiO2气凝胶水泥基复合砂浆性能及冻融损伤研究
于本田1,*, 杨玉祥1, 刘江2, 王永刚2, 王朋勇2, 谢超1
1 兰州交通大学土木工程学院,兰州 730070
2 中铁二十一局集团第二工程有限公司,兰州 730000
Study on Properties and Freeze-thaw Deterioration of Modified SiO2 Aerogel Cement-based Composite Mortar
YU Bentian1,*, YANG Yuxiang1, LIU Jiang2, WANG Yonggang2, WANG Pengyong2, XIE Chao1
1 School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2 The 2nd Engineering Co., Ltd., of China Railway 21st Bureau Group, Lanzhou 730000, China
下载:  全 文 ( PDF ) ( 5399KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用KH570硅烷偶联剂对SiO2气凝胶颗粒进行表面改性,将其等体积置换砂后掺入水泥砂浆中,制备得到改性气凝胶水泥基复合砂浆。对不同SiO2气凝胶掺量的水泥基复合砂浆的干密度、抗折抗压强度、导热系数和孔隙结构进行了测试,开展了水泥基复合砂浆快速冻融循环试验,分析了冻融循环对其抗压强度、动弹性模量、导热系数的影响规律,并采用电子扫描电镜(SEM)揭示了改性SiO2气凝胶水泥基复合砂浆冻融循环后的劣化机理。结果表明:硅烷偶联剂改性后的SiO2气凝胶颗粒可较为完整地嵌于水泥砂浆中,从而改善SiO2气凝胶砂浆的孔隙结构;随着改性后SiO2气凝胶的替换比例增加,水泥基复合砂浆的干密度、抗压抗折强度、导热系数明显下降,而孔隙率先减小后增加,当替换比例为40%时导热系数降低了46%、抗折强度降低了43%、抗压强度降低了68%、孔隙率增加了49%。SiO2气凝胶能够提高水泥砂浆的抗冻性能,但随着冻融循环次数的增加,SiO2气凝胶颗粒与胶凝材料的界面粘结破坏是其劣化的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于本田
杨玉祥
刘江
王永刚
王朋勇
谢超
关键词:  硅烷偶联剂  SiO2气凝胶  力学性能  导热性能  抗冻性能  微观性能    
Abstract: The surface modification of SiO2 aerogel particles was carried out by using KH570 silane coupling agent, and the modified SiO2 aerogel was mixed into the cement mortar by using the method of equal volume replacement sand to prepare the modified aerogel cement-based composite mortar. The dry density, flexural and compressive strength, thermal conductivity and pore structure of cementitious composite mortars with different SiO2 aerogel admixtures were tested. The rapid freeze-thaw cycle test of cementitious composite mortar was carried out, and the influence laws of freeze-thaw cycle on compressive strength, dynamic elastic modulus and thermal conductivity were analyzed, and the mechanism of deterioration of modified SiO2 aerogel cementitious composite mortar by freeze-thaw cycle was revealed by electron scanning electron microscopy (SEM). The results show that the SiO2 aerogel particles modified by KH570 can be more completely embedded in the cement mortar, thus improving the pore structure of SiO2 aerogel mortar. With the increase of the replacement ratio of modified SiO2 aerogel, the dry density, compressive and flexural strength, and thermal conductivity of cementitious composite mortar decreased significantly, while the porosity decreased first and then increased. When the replacement ratio was 40%, the thermal conductivity decreased by 46%, the flexural strength decreased by 43%, the compressive strength decreased by 68%, and the porosity increased by 49%. SiO2 aerogel can improve the frost resistance of cement mortar, but with the growth of the number of freeze-thaw cycles, the interfacial damage of SiO2 aerogel particles and cementitious materials is the main reason for its deterioration.
Key words:  silane coupling agent    SiO2 aerogel    mechanical properties    thermal conductivity    frost resistance    microscopic performance
出版日期:  2023-12-10      发布日期:  2023-12-08
ZTFLH:  TU528  
基金资助: 中国铁路总公司科技研究开发计划(P2018G004);长江学者和创新团队发展计划(IRT_15R29)
通讯作者:  * 于本田,兰州交通大学土木工程学院,副教授。2014年毕业于兰州交通大学,获工学博士学位。主要从事混凝土材料与结构耐久性、高性能混凝土技术、固废资源化利用等方面的研究与工程应用。发表学术论文70余篇,获省部级以上科研奖励3项,获专利授权6项,编制规范1部。yubentian@mail.lzjtu.cn   
引用本文:    
于本田, 杨玉祥, 刘江, 王永刚, 王朋勇, 谢超. 改性SiO2气凝胶水泥基复合砂浆性能及冻融损伤研究[J]. 材料导报, 2023, 37(23): 22040197-6.
YU Bentian, YANG Yuxiang, LIU Jiang, WANG Yonggang, WANG Pengyong, XIE Chao. Study on Properties and Freeze-thaw Deterioration of Modified SiO2 Aerogel Cement-based Composite Mortar. Materials Reports, 2023, 37(23): 22040197-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040197  或          http://www.mater-rep.com/CN/Y2023/V37/I23/22040197
1 Gabriel Samson, Annabelle Phelipot-Mardelé, Christophe Lanos. Magazine of Concrete Research, 2017, 69(4),201.
2 Qian B Z, Zhu J F. Building Energy Efficiency, 2009, 37(2),56 (in Chinese).
钱伯章, 朱建芳.建筑节能, 2009, 37(2),56.
3 Liu Z Y. Study on thermal performance of aerogel foamed concrete and its influencing factors. Master's Thesis, Guangzhou University, China, 2021, (in Chinese).
刘振宇. 气凝胶泡沫混凝土的热工性能及其影响因素研究.硕士学位论文,广州大学,2021.
4 Tao Gao, Bjørn Petter Jelle, Arild Gustavsen, et al. Construction and Building Materials, 2014, 52,130.
5 Wang Z J, Lu G Z, He G M, et al. New Building Materials, 2022, 49(1),124(in Chinese).
王肇嘉, 路国忠, 何光明, 等.新型建筑材料,2022, 49(01),124.
6 Wei H J, Chen J L, Ma H Y, et al. New Chemical Materials, 2021, 49(S1),248(in Chinese)
魏慧娟, 陈九龙, 马海燕, 等.化工新型材料, 2021, 49(S1),248.
7 Wang X G, Cheng G, Zhang W J. China Concrete and Cement Products, 2019(12),70(in Chinese).
王修贵, 程功, 张文静.混凝土与水泥制品, 2019(12),70.
8 Sehaqui H, Qi Z, Berglund L A. Composites Science and Technology, 2011, 71,1593.
9 Liu M Y. Efficient preparation and application of graphene oxide based aerogel particles. Master's Thesis, Tiangong University, China, 2019 (in Chinese).
刘明禹. 氧化石墨烯基气凝胶颗粒的高效制备与应用研究. 硕士学位论文,天津工业大学, 2019.
10 Yoon Jae Lee, Ji Chul Jung, Jongheop Yi, et al. Current Applied Physics, 2010, 10,682.
11 Feng J C, Wang Y R, Geng J, et al. Concrete, 2018(4),110(in Chinese).
封金财, 王怡人, 耿犟, 等.混凝土, 2018(4),110.
12 Shen J, Wang G Q, Wang Q, et al. Journal of Tongji University(Natural Science), 2004, 32(8), 1106(in Chinese).
沈军, 汪国庆, 王巧, 等.同济大学学报(自然科学版), 2004, 32(8), 1106.
13 Zhang Z, Wang X D, Shen J. Journal of Inorganic Materials, 2020, 35(4), 454(in Chinese).
张泽, 王晓栋, 沈军. 无机材料学报, 2020, 35(4), 454.
14 Soleimani Dorcheh A, Abbasi M H. Journal of Materials Processing Technology, 2008, 199,10.
15 Wang B Y, Zhang S M, Lan Y S, et al. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2010,37(5),30(in Chinese).
王宝玉,张苏明,兰玉顺, 等. 北京化工大学学报(自然科学版), 2010,37(5),30.
16 Liu Z H, Ding Y D, Wang F, et al. Equipment Environmental Enginee-ring, 2017, 14(1),71(in Chinese).
刘朝辉, 丁逸栋, 王飞, 等. 装备环境工程, 2017, 14(1),71.
17 Xu L P. Influence and reciprocal effects of vegetation rehabilitation on regional climate in loess plateau. Ph.D. Thesis, Northwest A&F University, China, 2008 (in Chinese).
徐丽萍. 黄土高原地区植被恢复对气候的影响及其互动效应. 博士学位论文,西北农林科技大学, 2008.
18 Yin M. The Adhensive effect of exterior wall insulation board layer and structure layer under freezing-thawing cycles. Master's Thesis, Xi'an Technological University, China, 2017 (in Chinese).
殷明. 冻融循环对外墙保温板与结构层粘结性能的影响. 硕士学位论文,西安工业大学,2017 (in Chinese).
19 Zhu Pinghua, Yu Shuqi, Cheng Cheng, et al. Advances in Cement Research, 2020, 32(12),527.
20 Dong J M, Ma M B. Concrete, 2011(4),95(in Chinese).
董健苗, 马铭彬.混凝土, 2011(4),95.
21 Kadum Al Z I, Bilal D, Cengiz D A, et al. Structural Concrete, 2019, 21,1.
22 GB/T 5486-2008, Test methods for inorganic rigid thermal insulation(in Chinese).
GB/T 5486-2008,无机硬质绝热制品试验方法.
23 GB/T 17671-1999, Method of testing cements-determination of strength (in Chinese).
GB/T 17671-1999,水泥胶砂强度检验方法(ISO法).
24 GB/T 50082-2009, Standard for test methods of long-term performance and durability of ordinary concrete(in Chinese).
GB/T 50082-2009,普通混凝土长期性能和耐久性能试验方法标准.
25 Wang F, Liu Z H, Deng Z P, et al. Journal of Functional Materials, 2016, 47(4),4064(in Chinese).
王飞, 刘朝辉, 邓智平, 等.功能材料, 2016, 47(4),4064.
26 Zhang M. Acta Materiae Compositae Sinica, 2020(11),2674(in Chinese).
张明.复合材料学报, 2020(11),2674.
27 Ma S Y, Zheng S H, Guo H N, et al. Journal of Materials Engineering, 2008(10), 366(in Chinese).
马士玉, 郑少华, 郭洪娜, 等.材料工程, 2008(10), 366.
28 Li F P. Study on properties and mechanism of organic silicon modified cement mortar. Master's Thesis, Wuhan Polytechnic University, China, 2019 (in Chinese).
李发平. 有机硅改性水泥砂浆性能及机理研究. 硕士学位论文,武汉轻工大学, 2019.
29 Lu J. Preparation and properties of cement-based porous materials based on SiO2. Master's Thesis, Southwest University of Science and Technology, China, 2020 (in Chinese).
路珏. 基于SiO2的水泥基多孔材料制备及性能. 硕士学位论文,西南科技大学, 2020.
30 Lu Jue, Jiang Jun, Lu Zhongyuan, et al. Construction and Building Materials, 2020, 245,118434.
31 Li H, Guo H L, Zhang Y. Building Structure, 2020, 50(24),116(in Chinese).
李昊, 郭皓隆, 张园.建筑结构, 2020, 50(24),116.
32 Yu L, Zhang J, Zhang J X, et al. Journal of Harbin Engineering University, 2015(11), 1459(in Chinese).
于蕾, 张君, 张金喜, 等.哈尔滨工程大学学报, 2015(11), 1459.
33 Guo Y C, Huang Z C, Wang W Z, et al. Journal of Building Materials, 2022, 25(1),16(in Chinese).
郭寅川, 黄忠财, 王文真, 等.建筑材料学报, 2022, 25(1),16.
34 Levent Bostanci. Journal of Building Engineering, 2020, 31,101478.
35 Chen M, Wang R Y, Cheng G, et al. Materials Reports, 2014,28(22),89(in Chinese).
陈苗,王如意,成功,等. 材料导报, 2014,28(22),89.
[1] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[2] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[3] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[4] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[5] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[6] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[7] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[8] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[9] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[10] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[11] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[12] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[13] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[14] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[15] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed