Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 21010052-10    https://doi.org/10.11896/cldb.21010052
  无机非金属及其复合材料 |
纳米零价铁基材料去除水中硝酸盐污染的研究进展
吕晓书1,*, 王霞玲1, 蒋光明1, 熊昆1, 汪小莉2, 张贤明1
1 重庆工商大学废油资源化技术与装备教育部工程研究中心,重庆 400067
2 中国石油集团川庆钻探工程有限公司安全环保质量监督检测研究院,重庆 400042
Review of Nanoscale Zero Valent Iron-based Materials and Their Application in the Removal of Aqueous Nitrate Pollution
LYU Xiaoshu1,*, WANG Xialing1, JIANG Guangming1, XIONG Kun1, WANG Xiaoli2, ZHANG Xianming1
1 Engineering Research Center for Waste Oil Recovery Technology and Equipment,Ministry of Education,Chongqing Technology and Business University,Chongqing 400067, China
2 China Petroleum Group Chuanqing Drilling Engineering Co., Ltd. Safety and Environmental Quality Supervision and Inspection Research Institute,Chongqing 400042,China
下载:  全 文 ( PDF ) ( 7555KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 地下水和地表水中的硝酸盐污染成为一个日益严重的环境问题,通过经济有效的办法对硝酸盐污染进行控制或处理,甚至实现完全无害化,是非常必要且迫切的。纳米零价铁作为一种典型的工程纳米材料,在硝酸盐污染环境修复中有巨大的应用潜力。
以纳米零价铁技术在硝酸根还原中的应用发展作为依据,该领域当前主要的研究工作集中于:(1)通过对纳米零价铁颗粒合成方法的探索和改进,提高其对高浓度硝酸盐废水的耐冲击能力,或与其他修复处理技术联用,增强其在原位修复中的适用性等;(2)研究环境条件(包括反应温度、溶解氧浓度、溶液初始pH,以及环境中其他竞争离子等)对纳米零价铁还原硝酸盐的影响规律,为该技术的工业推广提供理论支撑。然而,总结这些研究工作后发现该技术在向实用化进程中仍存在一些难点问题,尤其是零价铁技术使用寿命较短,硝酸根在体系内传质和吸附受限,产物(氮气)选择性低等。为此,在纳米零价铁材料的基础上,通过对其进行功能化改性,进而合成纳米铁基复合材料,作为更先进的技术替代。
本文从负载型、双金属型、表面改性型几个方面对纳米铁基复合材料进行了归纳整理,重点阐述了不同复合体系在水中硝酸盐污染去除中展示出的优异于纯纳米零价铁体系的多种性能,揭示纳米铁基复合材料促进机理和影响硝酸根还原能效的因素。最后,对纳米零价铁基材料修复水中硝酸根污染技术目前尚需要解决的问题和未来的发展方向进行了思考和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕晓书
王霞玲
蒋光明
熊昆
汪小莉
张贤明
关键词:  零价铁  化学还原  硝酸根  N2选择性  功能材料    
Abstract: Aqueous nitrate (NO3-) contamination is an ubiquitous environmental problem because of the extensive application of the relevant chemicals;the remediation of water polluted by nitrate via economic and effective methods, evenly realizing complete harmlessness is crucial. Nanoscale zero-valent iron (nZVI) is a typical engineered nanomaterial that is potentially used in environmental remediation of nitrate pollution.
In this paper, based on the application and development of nZVI technology in nitrate reduction, the prior studies mainly focus on the following:(1) improving its synthesis method or combining with other remediation techniques to improve its efficiency in in-situ remediation and enhance its resilience towards high concentration nitrate wastewater;(2) investigating the effects of environmental conditions including temperature, dissolved oxygen, solution pH, and competitive coexisting ions, to guide its practical applications. Although nZVI technology possesses remarkable potential in NO3-conversion, some difficulties remain, especially the short lifetime, limited mass transfer and adsorption capacity, and low selectivity towards nitrogen as a final product. These hinder the large-scale practical application of the technology. Therefore, functionalized nZVI-based materials, upon suitable modification, have gradually become promising substitutes for bare nZVI.
Herein, these modified materials are classified into three types, namely the supported, bimetallic, and the surface-modification system, especially emphasizing their advantages as compared with bare nZVI and revealing its promotion mechanism and factors affecting nitrate reduction energy efficiency. Finally, the existing problems to be addressed are identified, and future objectives and research areas worthy of exploration in the field of nZVI-based remediation technology are proposed.
Key words:  zero-valent iron    chemical reduction    nitrate    N2 selectivity    functional material
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  TB39  
基金资助: 国家自然科学基金面上项目(51978110);重庆市基础与前沿研究计划面上项目(cstc2019jcyj-msxmX0260);重庆市教委科研项目(KJQN201900837)
通讯作者:  * 吕晓书,重庆工商大学副研究员。2009年毕业于中国石油大学(华东),获得工学学士学位,2015年毕业于浙江大学环境与资源学院环境工程专业,获得工学博士学位,2013—2014年在美国布朗大学工程系进行联合培养。主要从事环境科学和工程相关的科研工作,特别是纳米材料的设计制备及其在环境污染去除等领域的应用。先后主持国家自然科学基金项目2项、重庆市自然科学基金2项、重庆市教委科技研究项目2项,以及校内开放平台项目等多项科研项目。已在Environmental Science & Technology、 Journal of Hazardous Materials、Environmental Science: Nano、Nanoscale、Journal of Colloid and Interface Science、ChemosphereChemical Engineering Journal等TOP期刊上发表SCI论文30余篇,同时获国家发明专利授权3项。lyuxiaoshu@zju.edu.cn   
引用本文:    
吕晓书, 王霞玲, 蒋光明, 熊昆, 汪小莉, 张贤明. 纳米零价铁基材料去除水中硝酸盐污染的研究进展[J]. 材料导报, 2023, 37(4): 21010052-10.
LYU Xiaoshu, WANG Xialing, JIANG Guangming, XIONG Kun, WANG Xiaoli, ZHANG Xianming. Review of Nanoscale Zero Valent Iron-based Materials and Their Application in the Removal of Aqueous Nitrate Pollution. Materials Reports, 2023, 37(4): 21010052-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010052  或          http://www.mater-rep.com/CN/Y2023/V37/I4/21010052
1 Bae B U, Jung Y H, Han W W, et al. Water research, 2002, 36 (13), 3330.
2 Schoeman J J, Steyn A. Desalination, 2003, 155(1), 15.
3 Fernandez-Nava Y, Maranon E, Soons J, et al. Bioresource Technology, 2008, 99 (17), 7976.
4 Mishra D, Farrell J. Environmental Science & Technology, 2005, 39 (2), 645.
5 Gillham R W, O'Hannesin S F. Groundwater, 1994, 32 (6), 958.
6 Li X Q, Elliott D W, Zhang W X. Critical Reviews in Solid State and Materials Sciences, 2006, 31 (4), 111.
7 Sohn K, Kang S W, Ahn S, et al. Environmental Science & Technology, 2006, 40 (17), 5514.
8 Song H, Jeon B H, Chon C M, et al. Chemosphere, 2013, 93 (11), 2767.
9 Kim H S, Kim T, Ahn J Y, et al. Chemical Engineering Journal, 2012, 197, 16.
10 Zhang J, Hao Z, Zhang Z, et al. Process Safety and Environmental Protection, 2010, 88 (6), 439.
11 Hwang Y H, Kim D G, Shin H S. Journal of Hazardous Materials, 2011, 185 (2-3), 1513.
12 Liu Y, Wang J L, et al. Science of the Total Environment, 2019, 671, 388.
13 Liu H B, Chen T H, Chang D Y, et al. Materials Chemistry and Physics, 2012, 133 (1), 205.
14 Wang T, Lin J, Chen Z, et al. Journal of Cleaner Production, 2014, 83, 413.
15 Liou Y H, Lo S L, Kuan W H, et al. Water Research, 2006, 40 (13), 2485.
16 Ryu A, Jeong S W, Jang A, et al. Applied Catalysis B: Environmental, 2011, 105 (1-2), 128.
17 Lin K S, Chang N B, Chuang T D. Science and Technology of Advanced Materials, 2008, 9 (2), 025015.
18 Hwang Y H, Kim D G, Shin H S. Journal of Hazardous Materials, 2011, 185 (2-3), 1513.
19 Choe S, Chang Y Y, Hwang K Y, et al. Chemosphere, 2000, 41 (8), 1307.
20 Khalil A M E, Eljamal O, Amen T W M, et al. Chemical Engineering Journal, 2017, 309, 349.
21 Liao C H, Kang S F, Hsu Y W. Water Research, 2003, 37 (17), 4109.
22 Yang G C C, Lee H L. Water research, 2005, 39 (5), 884.
23 Zeng Y, Walker H, Zhu Q. Journal of Hazardous Materials, 2017, 324, 605.
24 Sparis D, Mystrioti C, Xenidis A, et al. Desalination and Water Treatment, 2013, 51, 2926.
25 Shi J, Long C, Li A. Chemical Engineering Journal, 2016, 286, 408.
26 Shuai D, Choe J K, Shapley J R, et al. Environmental Science & Technology, 2012, 46(5), 2847.
27 Shin K H, Cha D K. Chemosphere, 2008, 72 (2), 257.
28 Liu Z Z, Hu J, Zhu X C, et al. Industrial Water Treatment, 2011, 31(11), 45(in Chinese).
刘子正, 胡箭, 朱先辰, 等. 工业水处理, 2011, 31(11), 45.
29 Carroll D. Field applications of in-situ remediation technologies:permeable reactive barriers, EPA. US, 1999.
30 Liu S J, Zhao Z Y, Jie L, et al. Water Research, 2013, 47(16), 5977.
31 Ahn S C, Oh S Y, Cha D K. Journal of Hazardous Materials, 2008, 156 (1-3), 17.
32 Kim I, Cha D K. The Science of the Total Environment, 2021, 754, 142410.
33 Huang Y H, Zhang T C. Water Research, 2005, 39 (9), 1751.
34 Zhang Y, Li Y, Li J, et al. Chemical Engineering Journal, 2011, 171 (2), 526.
35 Choe S, Liljestrand H M, Khim J. Applied Geochemistry, 2004, 19 (3), 335.
36 Huang Y H, Zhang T C. Water Research, 2004, 38 (11), 2631.
37 Cho D W, Song H, Schwartz F W, et al. Chemosphere, 2015, 125, 41.
38 Khalil A, Eljamal O, Jribi S, et al. Chemical Engineering Journal, 2016, 287, 367.
39 Shi J, Yi S, He H, et al. Chemical Engineering Journal, 2013, 230, 166.
40 Zhang H, Jin Z H, Han L, et al. Transactions of Nonferrous Metals Society of China, 2006, 16, s345.
41 Su L, Han D, Zhu G, et al. Nano Letters, 2019, 19 (8), 5423.
42 Jiang Z, Lv L, Zhang W, et al. Water Research, 2011, 45 (6), 2191.
43 Song X, Chen Z, Wang X, et al. Water Research, 2017, 114, 218.
44 Duan W, Li G, Lei Z, et al. Water Research, 2019, 161, 126.
45 Mostafa E, Reinsberg P, Garcia-Segura S, et al. Electrochimica Acta, 2018, 281, 831.
46 Yang Y, Hoffmann M R. Environmental science & Technology, 2016, 50 (21), 11888.
47 Elliott D W, Zhang W X. Environmental science & Technology, 2001, 35 (24), 4922.
48 Zhang W X, Wang C B, Lien H L. Catalysis Today, 1998, 40 (4), 387.
49 Xu Y, Zhang W X. Industrial & Engineering Chemistry Research,2000, 39 (7), 2238.
50 Schrick B, Blough J L, Jones A A D, et al. Chemistry of Materials, 2002, 14 (12), 5140.
51 Xu F, Deng S, Xu J, et al. Environmental Science & Technology, 2012, 46 (8), 4576.
52 Su Y, Adeleye A S, Huang Y, et al. Water Research, 2014, 63, 102.
53 Liou Y H, Lo S L, Lin C J, et al. Journal of Hazardous Materials, 2005, 127 (1-3), 102.
54 Liu Y, Gong X, Yang W, et al. Industrial & Engineering Chemistry Research, 2019, 58 (13), 5175.
55 Tang T T, Xing Q J, Zhang S H, et al. Environmental Pollution, 2019, 252 (Pt A), 888.
56 Jonoush Z A, Rezaee A, Ghaffarinejad A. Journal of Cleaner Production, 2020, 242, 118569.
57 Fateminia F S, Falamaki C. Process Safety and Environmental Protection, 2013, 91 (4), 304.
58 He Y, Lin H, Dong Y, et al. Chemical Engineering Journal, 2018, 347, 669.
59 Lin Y H, Tseng H H, Wey M Y, et al. The Science of the Total Environment, 2010, 408 (10), 2260.
60 Chen S S, Hsu H D, Li C W. Journal of Nanoparticle Research, 2005, 6 (6), 639.
61 Ao L, Xia F, Ren Y, et al. Chemical Engineering Journal, 2019, 357, 180.
62 Cao Z, Liu X, Xu J, et al. Environmental Science & Technology, 2017, 51 (19), 11269.
63 Kim E J, Kim J H, Azad A M, et al. ACS Applied Materials & Interfaces, 2011, 3 (5), 1457.
64 Wang B, Dong H, Li L, et al. Chemical Engineering Journal, 2020, 381, 122773.
65 Xu J, Wang Y, Weng C, et al. Environmental Science & Technology, 2019, 53, 5936.
[1] 吴青山, 赵鹏程, 刘志启, 周自圆, 李娜, 莫云泽. 镁铝水滑石的制备与应用研究[J]. 材料导报, 2022, 36(Z1): 22030128-8.
[2] 姚峄林, 张锦秋, 杨培霞, 安茂忠. 激光辅助电沉积技术及其在制备功能材料方面的应用[J]. 材料导报, 2022, 36(3): 20080209-9.
[3] 吴建飞, 袁红梅, 夏林敏, 赵红艳, 林金国, 李吉庆. 低温等离子体改性技术制备功能材料的研究进展[J]. 材料导报, 2022, 36(21): 20100119-9.
[4] 李小燕, 付晓辉, 李冠超, 王昱莹, 黄希, 刘小亮, 胡伟芳, 刘义保. 岩棉负载纳米零价铁去除溶液中U(Ⅵ)的性能和机理[J]. 材料导报, 2022, 36(20): 22040131-7.
[5] 何辉, 张忠明, 姜勇刚, 冯军宗, 李良军, 冯坚. 稀土氧化物疏水涂层制备方法的研究进展[J]. 材料导报, 2021, 35(z2): 50-55.
[6] 吴国玉, 郑晔, 王明涌, 邢志军. 化学还原法制备高分散纳米铂粒子[J]. 材料导报, 2021, 35(Z1): 406-410.
[7] 熊兆锟, 张恒, 刘杨, 周鹏, 何传书, 黄荣夫, 杜烨, 赖波. 基于零价铁的高级氧化技术与装备[J]. 材料导报, 2021, 35(21): 21012-21021.
[8] 付文英, 司司, 魏永生, 刘妍, 陈佳琪, 韦露, 赵新生. 硼氢化钠循环再生工艺的研究进展[J]. 材料导报, 2021, 35(15): 15017-15025.
[9] 孙剑锋, 张红, 梁金生, 王菲, 段昕辉, 王亚平. 生态环境功能材料领域的研究进展及学科发展展望[J]. 材料导报, 2021, 35(13): 13075-13084.
[10] 张克松, 石伟, 刘赛, 杨昶, 周心宇. 联苯基交联聚异腈的亚硝酸根电化学响应行为[J]. 材料导报, 2021, 35(12): 12175-12180.
[11] 夏进军, 李洁, 张雨萌, 张育新. 折纸结构及其特性的工程应用策略[J]. 材料导报, 2021, 35(11): 11196-11207.
[12] 王瑞瑞. 角蛋白基生物功能材料的研究现状与发展前景[J]. 材料导报, 2020, 34(21): 21199-21204.
[13] 史公初, 廖亚龙, 张宇, 苏博文, 王伟. 铜冶炼渣制备建筑材料及功能材料的研究进展[J]. 材料导报, 2020, 34(13): 13044-13049.
[14] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[15] 秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed