Please wait a minute...
材料导报  2020, Vol. 34 Issue (21): 21199-21204    https://doi.org/10.11896/cldb.19080154
  高分子与聚合物基复合材料 |
角蛋白基生物功能材料的研究现状与发展前景
王瑞瑞*
青海师范大学化学化工学院,西宁 810016
Research Status and Development Prospects of Keratin-based Biofunctional Materials
WANG Ruirui
College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, China
下载:  全 文 ( PDF ) ( 3718KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 世界各地每年产生700多万t废弃毛发未被合理利用,既浪费了资源,又污染了环境。毛发中含有95%的角蛋白,角蛋白是一种具有复杂分子结构、不易燃烧、亲水性强的天然高分子材料。由于角蛋白具有可再生、可降解、生物相容、无毒无害等优点,以废弃毛发为原料,开发角蛋白基生物功能新材料,拓宽角蛋白的应用领域,有利于废弃毛发的高值转化,符合可持续性发展的战略方针。
根据成纤化能力的不同,角蛋白被分为硬角蛋白和软角蛋白。从毛发中提取的角蛋白归属于硬角蛋白,其具有极强的成纤能力。硬角蛋白分子主要由α螺旋结构构成,含有大量的半胱氨酸残基。双硫键是维持角蛋白分子结构稳定的关键因素。双硫键的适度打开是大分子角蛋白提取技术的关键。
由于角蛋白分子结构中含有大量的双硫键、氢键和疏水相互作用,致使角蛋白在许多常见溶剂(水、稀酸、稀碱等)中的溶解度偏低。目前,角蛋白基生物功能材料的研发主要集中在四个方面:(1)角蛋白具有良好的生物相容性和生物活性,并且具有自体移植潜力,已被成功应用于生物功能膜、医用支架的开发和皮肤创面的治疗研究。(2)开发可控性强的角蛋白基药物载体材料,有效提高药物分子的利用率,在生物医学和农学领域已成为研究热点。(3)角蛋白分子上存在大量羧基、氨基、羟基等功能性基团,并且具有优异的乳化性能,利用角蛋白对织物纤维进行功能化改性,能够有效改善织物的透水透气性,赋予织物材料良好的使用性能。(4)角蛋白分子结构中含有大量活性基团,能够与重金属离子发生络合反应,进而将重金属离子固定在其网络结构中。因此,角蛋白基功能吸附材料在“三废”治理领域具有独特的意义。
本文首先介绍了角蛋白的四级结构,归纳了角蛋白的提取方法,描述了角蛋白在生物功能膜材料、医用创面敷料、药物载体、织物整理剂和吸附材料等领域的研究现状,最后分析并展望了角蛋白基生物功能材料的发展前景,以期为研发具有独特功能的角蛋白基生物材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王瑞瑞
关键词:  角蛋白  生物膜  创面敷料  药物载体  织物整饰剂  功能材料    
Abstract: According to incomplete statistics, more than 7 million tons of feather and hair are abandoned every year, which not only waste resources, but also pollute the environment. Feather and hair contain 95% keratin. Keratin is a non-flammable and hydrophilic natural polymer material with complex molecular structure. Keratin is renewable, biodegradable, biocompatible, non-toxic and harmless. Therefore, the use of discarded feather and hair as raw material, the development of new keratin-based biological functional materials, broadening the application of keratin, is conducive to the high value conversion of discarded feather and hair, in line with the strategic direction of sustainable development.
Keratin is divided into hard keratin and soft keratin according to different fibrillation. Keratin extracted from feather and hair is a kind of hard keratin, which has strong fibrillation. Hard keratin is mainly composed of α-helix structure and contains a lot of cysteine residues. Disulfide bond is the key factor to maintain the structural stability of keratin. Moderate destruction of disulfide bond is the key to the extraction of macromolecule keratin.
Due to the large amount of disulfide, hydrogen and hydrophobic interactions in the molecular structure of keratin, the solubility of keratin in many common solvents (water, dilute acid, dilute alkali, etc.) is low. At present, the research and development of keratin-based biological functional materials mainly focuses on four aspects: (1) Keratin has good biocompatibility and bioactivity. It has the potential of autotransplantation too. It has been successfully used in the development of biomembranes, medical scaffolds and wound dressings. (2) It has become a research focus in biomedical and agricultural fields to develop the keratin based drug carriers with strong controllability and effectively improve the utilization rate of drug molecules.(3) There are a large number of functional groups such as carboxyl, amino and hydroxyl groups in keratin molecule. Keratin has excellent emulsifying performance. The modification of fabric fiber by keratin can effectively improve permeability of fabric. There are a lot of active groups in the molecular structure of keratin, which can complex reactions with heavy metal ions, and then the heavy metal ions are fixed in its network structure. Therefore, keratin based adsorbing materials have unique significance in the field of “three wastes” treatment.
Firstly, the quaternary structure and extraction method of keratin are introduced. Then, the research status of keratin as a biomembrane, medical wound dressing, drug carrier, fabric finishing agent and adsorption material is described. Finally, the future research direction of keratin based biomaterials is pointed out. It is expected to provide reference for the development of keratin-based biomaterials with unique functions.
Key words:  keratin    biomembrane    wound dressing    drug carrier    fabric finishing agent    functional materials
               出版日期:  2020-11-10      发布日期:  2020-11-17
ZTFLH:  TQ93  
基金资助: 青海省自然科学基金(2019-ZJ-7071);青海师范大学中青年科研基金(2018-ZR-008)
作者简介:  王瑞瑞,工学博士,现为青海师范大学副教授,主要研究领域为生物质功能材料的研发。
引用本文:    
王瑞瑞. 角蛋白基生物功能材料的研究现状与发展前景[J]. 材料导报, 2020, 34(21): 21199-21204.
WANG Ruirui. Research Status and Development Prospects of Keratin-based Biofunctional Materials. Materials Reports, 2020, 34(21): 21199-21204.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080154  或          http://www.mater-rep.com/CN/Y2020/V34/I21/21199
[1] Lin G, Zhou H, Lian J, et al.Colloids and Surfaces B: Biointerfaces, 2019, 175, 291.
[2] Esparza Y, Ullah A, Wu J.International Journal of Biological Macromolecules, 2018, 107, 290.
[3] Park M, Shin H K, Kim B, et al.Materials Science & Engineering C-Materials for Biological Applications, 2015, 55, 88.
[4] Eslahi N, Dadashian F, Nejad N H.Preparative Biochemistry, 2013, 43(7), 624.
[5] Wang B, Yang W, Mckittrick J, et al.Progress in Materials Science, 2016, 76, 229.
[6] Mckittrick J, Chen P Y, Bodde S G, et al. JOM, 2012, 64(4), 449.
[7] Hill P, Brantley H, Dyke M V.Biomaterials, 2010, 31(4), 585.
[8] Kim S Y, Park B J, Lee Y, et al.Journal of Industrial and Engineering Chemistry, 2019, 73, 142.
[9] Aboushwareb T, Eberli D, Ward C, et al.Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2008, 90(1), 45.
[10] Wang S, Wang Z, Foo S E, et al.ACS Applied Materials & Interfaces, 2015, 7(9), 5187.
[11] Wang J, Ma S, Ren J, et al.Sensors & Actuators B-Chemical, 2018, 267, 342.
[12] Yan L, Kai S, Yu C, et al.ACS Applied Materials & Interfaces, 2018, 10(31), 26039.
[13] Jia R Y, He Y F, Wang R M, et al.Chemistry Bulletin, 2008(4), 265(in Chinese).
贾如琰, 何玉凤, 王荣民, 等. 化学通报, 2008(4), 265.
[14] Zhang Y, Zhang R, Zhang H, et al.Natural Product Research and Deve-lopment, 2018, 30(1), 120(in Chinese).
张毅, 张睿, 张昊, 等. 天然产物研究与开发, 2018, 30(1), 120.
[15] Sinkiewicz I, Sliwinska A, Staroszczyk H, et al.Waste and Biomass Valorization, 2017, 8, 1043.
[16] Poole A J, Lyons R E, Church J S.Journal of Polymers and the Environment, 2011, 19(4), 995.
[17] Liu Y, Luo C, Liu L L.Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(7), 274(in Chinese).
刘焱, 罗灿, 刘伦伦. 农业工程学报, 2014, 30(7), 274.
[18] Zhang H, Li R, Wang K, et al.Journal of Textile Research, 2015, 36(6), 55(in Chinese).
张恒, 李戎, 王魁, 等. 纺织学报, 2015, 36(6), 55.
[19] Xie H, Li S, Zhang S. Green Chemistry, 2005, 7(8), 606.
[20] Andrew S, Vyvyan T.Organic Process Research and Development, 2006, 10(4), 794.
[21] Idris A, Vijayaraghavan R, Rana U A, et al.Green Chemistry, 2013, 15, 525.
[22] Jiang Z, Yuan J G, Wang P, et al.Fine Chemicals, 2019, 36(2), 82(in Chinese).
姜哲, 袁久刚, 王平, 等. 精细化工, 2019, 36(2), 82.
[23] Ma B, Chen W, Qiao X, et al.Journal of Applied Polymer Science, 2016, 11, 44667.
[24] Clark J H, Farmer T J, Herrero-Davila L, et al.Green Chemistry, 2016, 18, 3914.
[25] Gupta P, Nayak K K.Polymer Engineering and Science, 2015, 55, 485.
[26] Rasheed F, Kuktaite R, Hedenqvist M S, et al.Green Chemistry, 2016, 18, 2782.
[27] Cao Y, Yao Y, Li Y, et al.Journal of Colloid and Interface Science, 2019, 544, 121.
[28] Sheldon R A.Green Chemistry, 2014, 16, 950.
[29] He M, Zhang B, Dou Y, et al.Journal of Applied Polymer Science, 2017, 134(15), 44680.
[30] Garrido T, Penalba M, Caba K L, et al.Food Hydrocolloids, 2019, 86, 11.
[31] Posati T, Giuri D, Nocchetti M, et al. European Polymer Journal, 2018, 105, 177.
[32] Mi X, Xu H, Yang Y.Colloids and Surfaces B: Biointerfaces, 2019, 177, 33.
[33] Lu C, Yuan J G, Wang Q, et al.New Chemical Materials, 2018, 46(11), 260(in Chinese).
陆晨, 袁久刚, 王强, 等. 化工新型材料, 2018, 46(11), 260.
[34] Wang J, Hao S, Luo T, et al.Colloids and surfaces B: Biointerfaces, 2016, 149, 341.
[35] Li W, Gao F, Kan J, et al.Colloids and Surfaces B: Biointerfaces, 2019, 175, 436.
[36] Wu P, Dai X Q, Chen K, et al. International Journal of Biological Macromolecules, 2018, 14, 1168.
[37] Yang G, Chen Q, Wen D, et al.ACS Nano, 2019, DOI:10.1021/acsnano.8b09573.
[38] Lin G, Chen X, Zhou H, et al.Journal of Applied Polymer Science, 2018, 136(10), 47160.
[39] Sun K, Guo J, He Y, et al.Journal of Biomaterials Science, 2016, 27(18), 1926.
[40] Zhang T, Li H W, Zhang M, et al.Wool Textile Journal, 2018, 46(9), 40(in Chinese).
张涛, 李宏伟, 张梅, 等. 毛纺科技, 2018, 46(9), 40.
[41] Zheng J H, Li L, Liu R T.Journal of Textile Research, 2018, 39(3), 92(in Chinese).
郑君红, 李亮, 刘让同. 纺织学报, 2018, 39(3), 92.
[42] Wei W, Youbo D, Zhou Z, et al.Journal of Applied Polymer Science, DOI:10.1002/app.47146.
[43] Ramos M L P, Galaburri G, González J A, et al.Journal of Environmental Chemical Engineering, 2018, 6, 7021.
[44] Xie W X, Li X D, Liu X M, et al.Environmental Protection and Circular Economy, 2018, 38(10), 30(in Chinese).
谢伟雪, 李小东, 刘孝敏, 等. 环境保护与循环经济, 2018, 38(10), 30.
[45] Li L Q, Wang W Y, Jin X, et al.New Chemical Materials, 2018, 46(8), 204(in Chinese).
李刘倩, 王闻宇, 金欣, 等. 化工新型材料, 2018, 46(8), 204.
[46] Liu L, Hua J L, Ou W Z, et al.Industrial Water & Wastewater, 2017, 48(6), 34(in Chinese).
刘莲, 花金龙, 区卫钊, 等. 工业用水与废水, 2017, 48(6), 34.
[47] Dias G J, Mahoney P, Hung N A, et al.Journal of Biomedical Materials Research-Part B: Applied Biomaterials, 2016, 105, 2034.
[48] Xing Y, Zhang X, Liu H L, et al.Journal of Dongua University (Na-tural Science), 2019, 45(1), 52(in Chinese).
邢瑶, 张昕, 刘洪玲, 等. 东华大学学报(自然科学版), 2019, 45(1), 52.
[1] 孙晓霞, 鲍艺, 彭黔荣, 陈亭羽, 卢小鸾, 杨敏. 角蛋白生物材料在创伤愈合中的应用研究进展[J]. 材料导报, 2020, 34(7): 7161-7167.
[2] 朱逸军, 刘子同, 袁久刚, 王强, 王平. 以巯基乙酸胆碱为共溶剂的角蛋白/PVA复合膜的一浴法制备及性能[J]. 材料导报, 2020, 34(14): 14187-14190.
[3] 史公初, 廖亚龙, 张宇, 苏博文, 王伟. 铜冶炼渣制备建筑材料及功能材料的研究进展[J]. 材料导报, 2020, 34(13): 13044-13049.
[4] 于坤, 韩晓东, 何丽华, 贾庆明, 陕绍云, 苏红莹. 用于药物载体系统的多糖材料的修饰方法[J]. 材料导报, 2019, 33(3): 510-516.
[5] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[6] 谢 飞,王兴发,王 丹,孙东旭,戚建晶. 生物膜作用下管线钢应力腐蚀开裂行为研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1541-1548.
[7] 陈曼, 何明, 郭妍婷, 尹国强. 静电纺羽毛角蛋白/聚乙烯醇/聚氧化乙烯纳米纤维膜的交联改性及表征[J]. 《材料导报》期刊社, 2018, 32(8): 1218-1223.
[8] 何明,窦瑶,陈曼,尹国强,崔英德,陈循军. 羽毛角蛋白/PVA复合纳米纤维膜的制备及表征[J]. 《材料导报》期刊社, 2018, 32(2): 198-202.
[9] 王丹彤,周涵,范同祥. 生物宽带反射结构色效应研究综述[J]. 材料导报, 2018, 32(19): 3465-3472.
[10] 张旺玺, 王艳芝, 梁宝岩, 李启泉, 罗伟, 孙长红, 成晓哲, 孙玉周. 纳米金刚石基于功能材料应用的研究现状[J]. 《材料导报》期刊社, 2018, 32(13): 2183-2188.
[11] 韩晓东, 张稳, 于坤, 贾庆明, 陕绍云, 苏红莹. 磁性水凝胶作为药物载体的应用研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 30-35.
[12] 詹世平, 闫思圻, 赵启成, 王卫京, 李鸣明. 石墨烯基材料的生物医用性能及其应用*[J]. 《材料导报》期刊社, 2017, 31(13): 25-32.
[13] 林森, 孙仕勇, 申珂璇, 董发勤. 电气石的环境功能属性及其复合功能材料应用研究*[J]. 《材料导报》期刊社, 2017, 31(13): 131-137.
[14] 黄啸,郑曦,易彩霞. 光响应多功能药物载体的制备及其对宫颈癌细胞的抑制作用*[J]. 材料导报编辑部, 2017, 31(10): 37-40.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed