Please wait a minute...
材料导报  2022, Vol. 36 Issue (3): 20080209-9    https://doi.org/10.11896/cldb.20080209
  金属与金属基复合材料 |
激光辅助电沉积技术及其在制备功能材料方面的应用
姚峄林, 张锦秋, 杨培霞, 安茂忠
哈尔滨工业大学化工与化学学院,新能源转换与储存关键材料技术工业和信息化部重点实验室,哈尔滨 150001
Laser-assisted Electrodeposition Technology and Its Application in the Preparation of Functional Materials
YAO Yilin, ZHANG Jinqiu, YANG Peixia, AN Maozhong
Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
下载:  全 文 ( PDF ) ( 9580KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电沉积是改善金属基材性能的主要方法之一,但目前单一的沉积技术已经无法满足功能材料制备等方面的诸多要求,故研发了许多新技术来克服常规沉积过程所引起的镀层缺陷。激光辅助电沉积(LAED)是一种在电沉积系统中引入激光辐照以实现高速、高质量和高选择性沉积的技术。与传统电沉积过程相比,LAED技术具有辐照区域沉积速度快、可定域沉积及促进纳米结构形成等优势。虽然目前对LAED技术的研究多以其作用机制为主,但由于激光与电沉积共同作用的过程较为复杂,对其作用机制的研究仍不够系统;且激光设备较为昂贵,沉积装置也需要特定的设计。这些因素导致该技术工艺体系不够完善、应用范围有限。随着小型、高性能激光器和各类监测手段的发展,该技术会有更多的优势和更广泛的应用。
本文综述了LAED技术的作用机制及装置组成,从激光在溶液中的作用、LAED沉积过程和激光与电沉积协同作用三方面对作用机制进行分析,发现不同实验条件会对沉积物质的结构和形态产生较大的影响,故通过调节激光辐照系统与电沉积系统的相关工艺参数可得到具有不同性能的镀层。激光辅助电沉积技术的代表性应用是制备无掩膜微图案、高质量镀层及各类微结构功能材料。本文期望为LAED技术的装置设计及其在各类功能材料方面的应用提供一定参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚峄林
张锦秋
杨培霞
安茂忠
关键词:  激光辅助  电沉积  作用机制  微结构  功能材料    
Abstract: Electrodeposition is one of the main methods to improve the performance of metal substrates, but currently the single deposition technology can no longer meet many requirements of functional materials preparation. So many new technologies have been developed to overcome the coating defects caused by conventional deposition processes. Laser-assisted electrodeposition (LAED) is a technology that introduces laser irradiation in an electrodeposition system to achieve high-speed, high-quality, and highly selective deposition. Compared with the traditional electrodeposition process, LAED technology has the advantages of fast deposition speed in the irradiated area, localized deposition and promotion of the formation of nanostructure. Although the current research on LAED technology is mostly based on the mechanism of action, the study on the mechanism of action is still not systematic due to the complicated process of laser and electrodeposition. Moreover, the laser equipment is relatively expensive and the deposition device requires a specific design. All of these lead to the incomplete process system of the technology and the limited application range. With the development of small high-performance lasers and various monitoring methods, this technology will have more advantages and wider applications.
This paper summarizes the mechanism of LAED technology and the composition of the device. It analyzes the mechanism of action from three aspects which are the role of laser in solution, the deposition process of LAED and the synergistic effect of laser and electrodeposition. Different experimental conditions will greatly affect the deposition material. Therefore, by adjusting the relevant process parameters of the laser irradiation system and the electrodeposition system, coatings with different properties can be obtained. The representative applications of laser-assisted electrodeposition technology are mainly the preparation of maskless micropatterns, high-quality coatings and various types of microstructured functio-nal materials. This paper hopes to provide a certain reference for the device design of LAED technology and its application in various functional materials.
Key words:  laser-assisted    electrodeposition    mechanism of action    microstructure    functional material
发布日期:  2022-02-10
ZTFLH:  TG174.441  
通讯作者:  zhangjinqiu@hit.edu.cn   
作者简介: 
姚峄林,2019年6月毕业于大连理工大学,获得工学学士学位。现为哈尔滨工业大学化工与化学学院硕士研究生,在张锦秋副教授的指导下进行研究,目前主要研究领域为CO2电催化材料。
张锦秋,哈尔滨工业大学化工与化学学院电化学工程系副教授、硕士研究生导师。2009年获哈尔滨工业大学化学工程与技术专业博士学位。长期以来一直从事电沉积功能材料、锂空气电池催化材料和CO2电催化材料研究。目前在电化学领域发表了大约40篇论文,并参与撰写多本书籍。
引用本文:    
姚峄林, 张锦秋, 杨培霞, 安茂忠. 激光辅助电沉积技术及其在制备功能材料方面的应用[J]. 材料导报, 2022, 36(3): 20080209-9.
YAO Yilin, ZHANG Jinqiu, YANG Peixia, AN Maozhong. Laser-assisted Electrodeposition Technology and Its Application in the Preparation of Functional Materials. Materials Reports, 2022, 36(3): 20080209-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080209  或          http://www.mater-rep.com/CN/Y2022/V36/I3/20080209
1 An M Z. Electroplating theroy and technology, Harbin Institute of Tech-nology Press, China, 2004, pp. 1 (in Chinese).
安茂忠. 电镀理论与技术, 哈尔滨工业大学出版社, 2004, pp. 1.
2 Hu R, Su Y, Liu Y, et al. Nanoscale Research Letters, 2018, 13(1), 198.
3 Wei X X, Liang Z J, Cao Y. Electroplating & Finishing, 2006, 25(5), 7(in Chinese).
魏孝信, 梁志杰, 曹勇. 电镀与涂饰, 2006, 25(5), 7.
4 Tudela I, Zhang Y, Pal M, et al. Surface & Coatings Technology, 2014, 259, 363.
5 Kowalik R, Mech K, Kutyla D, et al. Magnetohydrodynamics, 2015, 51(2), 345.
6 Hussein H E M, Amari H, Macpherson J V. ACS Catalysis, 2017, 7, 7388.
7 Ozawa E, Kawakami Y, Seto T. Scripta Materialia, 2001, 44(8-9), 2279.
8 Onodera Y, Nunokawa T, Odawara O, et al. Journal of Luminescence, 2013, 137(9), 220.
9 Chen X, Wen R, Zhang L, et al. Plasmonics, 2014, 9(4), 945.
10 von Gutfeld R J, Tynan E E, Melcher R L, et al. Applied Physics Letters, 1979, 35(9), 651.
11 Bindra P. Journal of the Electrochemical Society, 1987, 134(11), 2893.
12 Puippe C J. Journal of the Electrochemical Society, 1981, 128(12), 2539.
13 Grishko V I, Duley W W, Gu Z H, et al. Electrochimica Acta, 2003, 47(4), 643.
14 Gupta R K, Singh A, Singh A, et al. Surface Engineering, 2017, 34(6), 446.
15 Jacobs J W M. Journal of the Electrochemical Society, 1987, 134, 2690.
16 Nguyen T T P, Tanabe R, Ito Y. Optics Laser Technology, 2018, 100, 21.
17 Qiang H, Han B, Chen J, et al. AIP Advances, 2017, 7(7), 075109.
18 von Gutfeld R J, Sheppard K G. Ibm Journal of Research and Development, 1998, 42(5), 639.
19 Ren B, Tian Z Q. Electrochemistry, 1996, 2(1), 9(in Chinese).
任斌, 田中群. 电化学, 1996, 2(1), 9.
20 Cho C H, Shin H S, Chu C N. Surface & Coatings Technology, 2013, 222, 15.
21 Zhang Z, Jiang Y, Huang L, et al. Laser Technology, 2017, 23(6), 1695.
22 Zha Q X. Introduction to electrode process dynamics, Science Press, China, 2002, pp. 256 (in Chinese).
查全性. 电极过程动力学导论, 科学出版社, 2002, pp.256.
23 Nie X, Zhang Z Y, Liu A, et al. Chinese Journal of Lasers, 2017, 44(4), 129(in Chinese).
聂昕, 张朝阳, 刘皋, 等. 中国激光, 2017, 44(4), 129.
24 Lin Q. Journal of the Electrochemical Society, 1992, 139(6), L62.
25 Cristescu C, Preda A, Popescu I, et al. Applied Surface Science, 1996, 106, 114.
26 Dai X R. International Journal of Electrochemical Science, 2017, 12(10), 9747.
27 Park J, Kim H. In: Conference Record of the 2010 5th IEEE Internatio-nal Conference on Nano/Micro Engineered and Molecular Systems. Xiamen, China, 2010, pp. 1120.
28 Zouari I, Pierre C, Lapicque F, et al. Journal of Applied Electrochemistry, 1993, 23(9), 863.
29 Wang X H, Zhou H J, Yu Z Z. Acta Chimica Sinica, 1993, 51(4), 341(in Chinese).
王旭红, 周焕钧, 郁祖湛. 化学学报, 1993, 51(4), 341.
30 Wee L M, Li L. Applied Surface Science, 2005, 247(1), 285.
31 Kruusing A. Optics & Lasers in Engineering, 2004, 41(2), 307.
32 Costa J M, de Almeida Neto A F. Ultrasonic Sonochemistry, 2020, 68, 105193.
33 Dobosz I, Kutyla D, Kac M, et al. Materials Science and Engineering:B, 2020, 262, 114795.
34 Zhang J Q, Li D, Chen M M,, et al. Chinese Journal of Chemical Phy-sics, 2014, 27, 704
35 Rassaei L, Vigil E, French R W, et al. Electrochimica Acta, 2009, 54(26), 6680.
36 Jin H C, Kim G M. International Journal of Precision Engineering & Ma-nufacturing, 2011, 12(1), 165.
37 Homma T, Kubo N, Osaka T. Electrochimica Acta, 2003, 48(20-22), 3115.
38 von Gutfeld R J, Gelchinski M H, Vigliotti D R, et al. Journal of the Electrochemical Society, 1984, 123(12), 1800.
39 von Gutfeld R J, Gelchinski M H, Romankiw L T. Los Angeles Technical Symposium, 1983, 385(6), 118.
40 Jin J, Teramae N, Haraguchi H. Chemistry Letter, 1993, 22(1), 101.
41 Wang L, Dong L, Li L, et al. Journal of Materials Science, 2017, 53(5), 3239.
42 Tu K T, Chung C K. Micro & Nano Letters, 2014, 9(10), 669.
43 Yoneyama H, Kawai K, Kuwabata S. Journal of the Electrochemical Society, 1988, 135(7), 1699.
44 Wang D P, Wang Z B, Zhang Z, et al. Applied Physics Letters, 2013, 102(8), 1.
45 Zhao L, Wang Z, Zhang J, et al. Applied Surface Science, 2015, 346, 574.
46 Zhao Q, Zhao J, Tao M, et al. Journal of Luminescence, 2019, 214, 116580.
47 Li Q, Li Y, Liu L, et al. Small, 2020, 16, 2005639.
48 Solieman A, Moharram A H, Aegerter M. Applied Surface Science, 2010, 256, 1925.
49 Fan F Y. The study of the hydrophobic mechanism and process on bionic coupling structure by both laser processing and electrodeposition. Master's Thesis, Changchun University of Science and Technology, China, 2018 (in Chinese).
范凤玉.激光电沉积复合制备仿生耦合结构疏水机理与工艺研究. 硕士学位论文, 长春理工大学, 2018.
50 Jia Y Q. The research on ware-corrosion mechanisms of electrodeposition and laser-electrodeposition Ni-based alloy and composite coatings. Master's Thesis, Hebei University of Technology,China, 2002 (in Chinese).
贾艳琴. 电沉积与激光电沉积Ni基合金及其复合镀层腐蚀磨损特性研究. 硕士学位论文, 河北工业大学, 2002.
51 Wang A B, Zhang Z Y, Xu K, et al. Electroplating & Finishing, 2020, 39(11), 691(in Chinese).
王安斌, 张朝阳, 徐坤, 等. 电镀与涂饰, 2020, 39(11), 691.
52 Zabludovsky V A, Tytarenko V V, Shtapenko E P. Transactions of the Institute of Metal Finishing, 2017, 95(6), 337.
53 Wu Y, Zhang Z, Xu K, et al. Applied Surface Science, 2020, 535, 147707.
54 Yan T, Liang Z J, Wang W L. Electroplating & Finishing, 2009, 28(10), 15 (in Chinese).
闫涛, 梁志杰, 王望龙. 电镀与涂饰, 2009, 28(10), 15.
55 Ye Y F, Wang J. Electroplating & Pollution Control, 1997, 17(6), 3 (in Chinese).
叶匀分, 王建. 电镀与环保, 1997, 17(6), 3.
56 Jiang Y J, Zhang Z Y, Huang L, et al. Laser Technology, 2016, 40(5), 660 (in Chinese).
姜雨佳, 张朝阳, 黄磊, 等. 激光技术, 2016, 40(5), 660.
57 Yan T, Liang Z J, Tan J, et al. China Surface Engineering, 2006, 19(2), 39 (in Chinese).
闫涛, 梁志杰, 谭俊, 等.中国表面工程, 2006, 19(2), 39.
58 Wang Y, Shen L, Jiang W, et al. Surface and Coatings Technology, 2018, 357, 957.
59 Amendola V, Meneghetti M. Physical Chemistry Chemical Physics, 2009, 11(20), 3805.
60 Chen S H, Lin J. Optics & Laser Technology, 2012, 44(1), 169.
61 Reetz M, Helbig W. Journal of the American Chemical Society, 1994, 116(16), 7401.
62 Liu Z K, Wang Y F, Liao Y L, et al. Nanotechnology, 2012, 23(12), 1.
63 Nishino J, Chatani S, Uotani Y, et al. Electrochemistry, 1999, 67(12), 1141.
64 Nian Q, Liu C R, Cheng G J. Manufacturing Letters, 2013, 1(1), 54.
65 Yu Z L, Meng X D, Hu Y, et al. Materials Research Bulletin, 2017, 93(9), 208.
66 Yu Z L, Meng X D, Yin M, et al. Chemical Physics Letters, 2018, 698, 181.
[1] 何辉, 张忠明, 姜勇刚, 冯军宗, 李良军, 冯坚. 稀土氧化物疏水涂层制备方法的研究进展[J]. 材料导报, 2021, 35(z2): 50-55.
[2] 席雅允, 沈玉, 刘娟红, 吴瑞东, 许鹏玉. 化学激发对煤气化渣-水泥体系抗压强度影响机理研究[J]. 材料导报, 2021, 35(z2): 262-267.
[3] 石永恒, 芶立. 晶核剂对CMAS系微晶玻璃结构和性能的影响[J]. 材料导报, 2021, 35(5): 5027-5031.
[4] 王旭, 牛宗伟, 王晓明, 赵阳, 韩国峰, 常青, 付华, 滕涛, 赵菲菲. 外场(力)辅助射流电沉积研究现状[J]. 材料导报, 2021, 35(5): 5107-5121.
[5] 贺文志, 邓承继, 丁军, 余超, 王杏, 祝洪喜. 多孔Mo2C/C复合陶瓷材料的制备及吸附性能[J]. 材料导报, 2021, 35(24): 24052-24056.
[6] 孙剑锋, 张红, 梁金生, 王菲, 段昕辉, 王亚平. 生态环境功能材料领域的研究进展及学科发展展望[J]. 材料导报, 2021, 35(13): 13075-13084.
[7] 王杏, 陈洋, 曹桂莲, 邓承继, 丁军, 余超, 祝洪喜. 氮化温度对MgO-C耐火材料结构和性能的影响[J]. 材料导报, 2021, 35(12): 12053-12056.
[8] 刘显刚, 安建成, 孙佳佳, 张骞, 秦艳濛, 刘新红. 化学气相沉积法制备SiC纳米线的研究进展[J]. 材料导报, 2021, 35(11): 11077-11082.
[9] 夏进军, 李洁, 张雨萌, 张育新. 折纸结构及其特性的工程应用策略[J]. 材料导报, 2021, 35(11): 11196-11207.
[10] 廖磊, 吕承航, 黄维刚, 秦霸. 电沉积法制备纳米SnO2及其应用综述[J]. 材料导报, 2020, 34(Z2): 57-62.
[11] 尹雪亮, 刘洋, 李丽颖, 宫长伟, 杜成武, 毛榜玉, 彭可武. 添加ZrO2对CaAl4O7材料烧结的影响[J]. 材料导报, 2020, 34(Z1): 144-147.
[12] 吴建辉, 吴蒙华, 佐姗姗, 钱宁开. 无掩模定域性电沉积三维微结构的仿真研究[J]. 材料导报, 2020, 34(Z1): 427-432.
[13] 吴双全, 任鑫, 初鑫, 江仁康, 窦春岳, 高志玉. 基于双向脉冲电沉积下的Ni-纳米TiC复合镀层结构及耐磨性能[J]. 材料导报, 2020, 34(24): 24080-24085.
[14] 李萌, 杨成博, 张静, 郑开宏. 轻质高熵合金的研究现状[J]. 材料导报, 2020, 34(21): 21125-21134.
[15] 王瑞瑞. 角蛋白基生物功能材料的研究现状与发展前景[J]. 材料导报, 2020, 34(21): 21199-21204.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed