Please wait a minute...
材料导报  2021, Vol. 35 Issue (15): 15017-15025    https://doi.org/10.11896/cldb.20090358
  材料与可持续发展(四) ———材料再制造与废弃物料资源化利用* |
硼氢化钠循环再生工艺的研究进展
付文英, 司司, 魏永生, 刘妍, 陈佳琪, 韦露, 赵新生
江苏师范大学物理与电子工程学院氢能实验室,徐州 221116
Research Progress of Sodium Borohydride Regeneration Process
FU Wenying, SI Si, WEI Yongsheng, LIU Yan, CHEN Jiaqi, WEI Lu, ZHAO Xinsheng
Laboratory of Hydrogen Energy, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
下载:  全 文 ( PDF ) ( 3947KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硼氢化钠(NaBH4)的储氢密度大,在碱液中能实现常压常温储运,是质子交换膜燃料电池(PEMFC)间接供氢和直接硼氢化燃料电池(DBFC)系统的氢源材料,但价格昂贵、产氢成本太高、再生困难等问题制约了其规模化发展。
研究学者对硼氢化钠的生产工艺方法进行了很多研究,较早的有工业合成法、直接还原法等。直接还原法将偏硼酸钠、氢化镁、镁等原料在氢气氛或氩气氛下对体系进行加热来获得硼氢化钠,从可实现一步制备、产物产量高的角度来看,该方法确实吸引人,但是它需要高压高温且能耗大,有一定危险性。近年来研究较多的是以高能球磨法为主的机械-化学还原法,将原料放入球磨机中,在不同转速和球磨时间下获得硼氢化钠,优点是工艺简单,仅在常温常压下就可以获得硼氢化钠,并且产量高、成本低,是一种有效的制备方法。此外,工艺简单、条件温和的方法还有利用电化学还原法制备硼氢化钠,选择合适的电极材料、电解液在电解槽中电解还原制得硼氢化钠,但是利用此种方法制得的产物产率太低,并且其反应机理仍存在争议。
本文对国内外的硼氢化钠再生工艺进行了综述,从不同的再生工艺——工业合成法、直接还原法、机械-化学还原法和电化学还原法进行了讨论和探究,总结并分析了每种方法的机理、工艺路线及优缺点,并对其更进一步的研究进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付文英
司司
魏永生
刘妍
陈佳琪
韦露
赵新生
关键词:  硼氢化钠  储氢  燃料电池  再生技术  电化学还原法    
Abstract: Sodium borohydride(NaBH4) has high hydrogen storage density, which could be stored and transported under normal pressure and temperature in alkaline solution. Simultaneously, sodium borohydride emerged as hydrogen storage candidate for proton exchange membrane fuel cell (PEMFC) and direct borohydride fuel cell (DBFC) system. But the development was constrained for the problems, such as the high cost of hydrogen production, the difficulty of regeneration and the need of noble metal catalyst.
Many researchers have made many researches on the process of regenerating sodium borohydride, including industrial synthesis process and direct reduction process. The process of direct sodium borohydride reduction is an one-step synthesis method of heating sodium metaborate, magnesium hydride and magnesium in the presence of hydrogen or argon atmosphere. This is a fairly attractive process from the perspective of one-step reaction and high product yield, but there are some risks associated with high pressure, high temperature, and high energy consumption. In recent years, the process of mechanical-chemical reduction, especially high-energy ball milling process, has been studied too much. Sodium borohydride can be regenerated by ball milling at different speeds and ball milling time under normal temperature and pressure, and the regeneration process is convenient and economical. In addition, sodium borohydride can be synthesized by electrochemical reduction process with simple process and mild conditions, selecting appropriate electrode and electrolytic solution to product sodium borohydride in the electrolytic cell. However, the product yield obtained by this process is pretty low, furthermore, the mechanism had rarely studied.
In this paper, the regeneration processes of sodium borohydride at home and abroad are reviewed. Industrial synthesis process, direct reduction process, mechanical-chemical reduction process and electrochemical reduction process are discussed. Meanwhile, the mechanism, process route and their relative merits of each method are summarized and analyzed.
Key words:  sodium borohydride    hydrogen storage    fuel cell    regeneration process    electrochemical reduction
               出版日期:  2021-08-10      发布日期:  2021-08-31
ZTFLH:  TK91  
基金资助: 国家自然科学基金项目(21606115);江苏省研究生科研与实践创新项目(KYCX20_2214;SJCX20_0910);徐州市科技计划项目(KC20195);江苏省高等学校大学生创新创业训练计划项目(XSJCX10093)
作者简介:  付文英,2019年6月毕业于山东理工大学,获得理学学士学位。现为江苏师范大学物理与电子工程学院硕士研究生,在魏永生副教授的指导下进行研究。目前主要研究领域为电化学还原偏硼酸钠制备硼氢化钠。
魏永生,江苏师范大学物理与电子工程学院副教授、硕士研究生导师。2006年7月本科毕业于中国矿业大学化学工程与工艺专业,2011年7月在北京交通大学取得博士学位,2008—2009年在美国迈阿密大学进行博士研究工作。2013年于北京化工大学取得博士后学位。主要从事燃料电池、电解水制氢催化剂、电化学还原制备硼氢化钠的研究工作。先后主持国家自然科学基金青年项目、江苏省自然科学基金青年项目等科研课题,参与国家863项目、国际合作项目、国家自然科学基金面上项目等项目。迄今在Journal of Power Sources, International Journal of Hydrogen Energy, Phys. Chem. Chem. Phys等国内外学术期刊发表论文75篇,引用300余次。
引用本文:    
付文英, 司司, 魏永生, 刘妍, 陈佳琪, 韦露, 赵新生. 硼氢化钠循环再生工艺的研究进展[J]. 材料导报, 2021, 35(15): 15017-15025.
FU Wenying, SI Si, WEI Yongsheng, LIU Yan, CHEN Jiaqi, WEI Lu, ZHAO Xinsheng. Research Progress of Sodium Borohydride Regeneration Process. Materials Reports, 2021, 35(15): 15017-15025.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090358  或          http://www.mater-rep.com/CN/Y2021/V35/I15/15017
1 Liu Z X, Shi S Q, Song X F. Journal of Hebei Normal University (Natural Science),1997,21(1),71(in Chinese).
刘志贤,石双群,宋新芳.河北师范大学学报(自然科学版),1997,21(1),71.
2 Liu Y H, Huang K L, Li K X, et al. Enterprise Science and Technology and Development,2009(24),20(in Chinese).
刘宇宏,黄科林,李克贤,等.企业科技与发展,2009(24),20.
3 Jia M, Nurul A C, Yogeshwar S. Renewable and Sustainable Energy Reviews,2010,14,183.
4 Santos D M F, Sequeira C A C. International Journal of Hydrogen Energy,2010,35,9851.
5 Yu D M, Zhang D X, Li X Y, et al. Chinese Battery Industry,2011,16(2),117(in Chinese).
余丹梅,张代雄,李小艳,等.电池工业,2011,16(2),117.
6 Wei Y S, Wang M S, Kang J, et al. Materials Reports A: Review Papers,2018,32(10),3304(in Chinese).
魏永生,王茂森,康健,等.材料导报:综述篇,2018,32(10),3304.
7 Wei Yongsheng, Wang Ru, Meng Liyuan, et al. International Journal of Hydrogen Energy,2017,42(15),9945.
8 Wei Yongsheng, Huang Xingkai, Wang Junyan, et al. International Journal of Hydrogen Energy,2017,42(41),25860.
9 Wei Yongsheng, Wang Yan, Wei Lu, et al. International Journal of Hydrogen Energy,2018,43(2),592.
10 Wei Yongsheng, Meng Wei, Wang Yan et al. Journal of Hydrodynamics,2017,42(9),6072.
11 Schlesinger H I, Brown H C, Finholt A E, et al. Journal of the American Chemical Society, 1952,75(1),215.
12 Friedrich S, Konrad L. U.S. patent, US78779159A, 1964.
13 Horn E M, John K, Lang K, et al. U.S. patent, US3505035A, 1970.
14 Glemser O. D.E. patent, DE949943C.1956.
15 Li Z P, Liu B H, Morigasaki N, et al. Journal of Alloys and Compounds,2003,354,243.
16 Li Z P, Morigazaki N, Liu B H, et al. Journal of Alloys and Compounds,2003,349,232.
17 Nakamura M, Nakao H, Tsuchiyama K, et al. J.P. patent,JP2002126458A.2002.
18 Nakao H, Nakamura M, Tsuchiyama K, et al. J.P. patent, JP2002137906A,2002.
19 Suda S. J.P. patent, JP2002173306,2002.
20 Henrik N, Tarja T, Antti R, et al. Metallurgical and Materials Transactions B,2012,43(5),1113.
21 Kojima Y, Haga T. International Journal of Hydrogen Energy,2003,28(9),989.
22 Eom K, Cho E, Kim M, et al. International Journal of Hydrogen Energy,2013,38(6),2804.
23 Liu B H, Li Z P, Morigasaki N, et al. International Journal of Hydrogen Energy,2008,33(4),1323.
24 Ou T, Giuliano A, Panizza M, et al. International Journal of Hydrogen Energy,2013,38(35),15269.
25 Kayacan , Dogan M, Uysal B Z. International Journal of Hydrogen Energy,2011,36(13),7410.
26 Zhang H, Zheng S, Fang F, et al. Journal of Alloys and Compounds,2009,484(1-2),352.
27 Pistidda C, Garroni S, Minella C B, et al. Journal of Physical Chemistry C,2010,114,21816.
28 Garroni S, Minella C B, Pottmaier D, et al. International Journal of Hydrogen Energy,2013,38(5),2363.
29 Li Z P, Morigazaki N, Liu B H. Journal of Alloys and Compounds,2003,349,232.
30 Hsueh C L, Liu C H, Chen B H, et al. International Journal of Hydrogen Energy,2009,34(4),1717.
31 Kong L, Cui X, Jin H, et al. Energy Fuel,2009,23,5049.
32 Çetin Ç, Metin G. Renewable Energy,2010,35(9),1895.
33 Çakanyildirim Ç, Gürü M. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,2011,33(20),1912.
34 Ouyang L Z, Zhong H, Li Z M, et al. Journal of Power Sources,2014,269,768.
35 Chen W, Ouyang L Z, Liu J W, et al. Journal of Power Sources,2017,359,400.
36 Zhong Hao, Ouyang Liuzhang, Liu Jiangwen, et al. Journal of Power Sources,2018,390,71.
37 Zhu Yongyang, Ouyang Liuzhang, Zhong Hao, et al. Angewandte Chemie International Edition,2020,59,8623.
38 Cooper H B H. U.S. patent, US3734842A,1973.
39 Sharifian H, Dutcher J S. U.S. patent, US4904357A,1990.
40 Hale C H, Sharifian H. U.S. patent, US4931154A,1990.
41 Amendola S. U.S. patent, US6497973B1,2002.
42 曹余良,杨汉西,光先勇,等.中国专利,CN1584123,2005.
43 Allen N T. U.S. patent, US20110236286A1,2011.
44 Wang J Q. Preliminary study on electrochemical reduction of sodium metaborate to produce sodium borohydride, Taiyuan University of Technology, China,2004(in Chinese).
王建强.电化学还原偏硼酸钠制备硼氢化钠初探.硕士学位论文,太原理工大学,2004.
45 Zhao J X. Research on synthesis of sodium borohydride from sodium metaborate by electrolysis, Chongqing University, China,2008(in Chinese).
赵家雄.电解偏硼酸钠合成硼氢化钠的研究.硕士学位论文,重庆大学,2008.
46 孙彦平,梁镇海.中国专利,CNl396307,2003.
47 Shu C H. Study on new methods for fuels desulfurization based on reduction with sodium borohydride, Shanghai Jiao Tong University, China,2014(in Chinese).
舒陈华.基于硼氢化钠还原的燃料脱硫新方法研究.博士学位论文,上海交通大学,2014.
48 He M. Preparation of nickel-based and cobalt-based rare earth composite electrodes and their application in electrocatalytic sodium metaborate, Qinghai Normal University, China,2018(in Chinese).
何敏.镍基、钴基稀土复合电极制备及电催化NaBO2的研究.硕士学位论文,青海师范大学,2018.
49 Zhang S M, Chen B Q, Gao L X, et al. Journal of Functional Materials,2020,51(4),4207(in Chinese).
张士民,陈必清,高利霞,等.功能材料,2020,51(4),4207.
50 Gao L X, Chen B Q, Li M, et al. Applied Chemical Industry,2020,49(2),341(in Chinese).
高利霞,陈必清,李苗,等.应用化工,2020,49(2),341.
51 Kreevoy M M, Jacobson R W. Ventron Alembic,1979,15,2.
52 Wang Z X, Wang S J, et al. Petroleum Processing and Petrochemicals,2007,38(11),6(in Chinese).
王振新,汪树军,等.石油炼制与化工,2007,38(11),6.
53 Park E H, Uk Jeong S, Ho J, et al. International Journal of Hydrogen Energy,2007,32(14),2982.
54 曹余良,杨汉西,光先勇,等.中国专利,CN1584122,2005.
55 Martins J I, Nunes M C, Koch R, et al. Electrochemica Acta,2007,52(23),6443.
56 Maoka T,Enyo M. Surface Technology,1979,9(3),147.
57 Wei X Y, Zhang L J, Liang J J, et al. Technology and Development of Chemical Industry,2003,32(3),1(in Chinese).
韦小茵,张丽娟,梁锦进,等.化工技术与开发,2003,32(3),1.
58 Ayse Elif Sanli, Ilknur Kayacan, Bekir Zühtü Uysal, et al. Journal of Power Sources,2010,195,604.
[1] 王小炼, 杨茂, 刘永辉, 张渝彬, 冯威. 非贵金属催化剂催化硼氢化钠水解制氢的研究进展[J]. 材料导报, 2021, 35(Z1): 21-28.
[2] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[3] 任万青, 徐掌印, 尹贻光, 祁震. TiFe基储氢材料性能的研究进展[J]. 材料导报, 2021, 35(Z1): 306-310.
[4] 吴国玉, 郑晔, 王明涌, 邢志军. 化学还原法制备高分散纳米铂粒子[J]. 材料导报, 2021, 35(Z1): 406-410.
[5] 李磊, 刘晓莲, 王利媛, 康卫民, 庄旭品. 无机相拓扑结构对有机-无机复合质子交换膜性能的影响综述[J]. 材料导报, 2021, 35(Z1): 621-627.
[6] 卢祺, 黄锋, 郭逊. 合金化对Mg-Ni系合金储氢性能的影响:综述[J]. 材料导报, 2021, 35(9): 9033-9040.
[7] 李金韩, 余少彬, 石梦童, 汪长征, 王强. 基于TiO2的光阳极材料应用于光催化燃料电池的研究进展[J]. 材料导报, 2021, 35(7): 7048-7055.
[8] 焦齐统, 潘炜, 朱帅, 陈翔宇, 杨宁, 陈建, 顾晨宇, 邱天, 刘晶晶. 相组成对La0.75Mg0.25Ni3.5储氢合金电化学性能的影响[J]. 材料导报, 2021, 35(6): 6140-6145.
[9] 芦宝华, 徐宁, 陈晓彤, 谢晓红, 李久明. 硼氢化钠还原烯烃和炔烃的研究进展[J]. 材料导报, 2021, 35(5): 5214-5221.
[10] 陈健, 顾晨宇, 杨宁, 邱天, 徐杰, 陈翔宇, 朱帅, 焦齐统, 潘炜, 刘晶晶. LaNi5.5Sn1.5-C-Si合金优异的长期吸/放氢循环性能[J]. 材料导报, 2021, 35(4): 4112-4117.
[11] 宋显珠, 郑明月, 肖劲松, 张镇. 氢燃料电池关键材料发展现状及研究进展[J]. 材料导报, 2020, 34(Z2): 1-5.
[12] 胡洁琼, 谢明, 陈永泰, 杨有才, 方继恒, 范小通, 李爱坤. Au-Pt-Ni三元催化剂体系纳米相图的研究进展[J]. 材料导报, 2020, 34(Z2): 338-343.
[13] 赵秋萍, 钱庆一, 张斌, 牟志星, 张兴凯. 质子交换膜燃料电池金属双极板表面碳基防护镀层研究进展[J]. 材料导报, 2020, 34(Z1): 395-399.
[14] 林佩俭, 苗鹤, 王洲航, 陈斌, 武旭扬, 袁金良. 固体氧化物燃料电池(SOFC)钛基钙钛矿阳极的研究进展[J]. 材料导报, 2020, 34(5): 5032-5038.
[15] 张英杰,吴昊,曾晓苑,李雪,董鹏,肖杰. 直接碳固体氧化物燃料电池阳极材料的研究进展[J]. 材料导报, 2020, 34(3): 3090-3098.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed