Please wait a minute...
材料导报  2021, Vol. 35 Issue (15): 15026-15030    https://doi.org/10.11896/cldb.20070041
  材料与可持续发展(四) ———材料再制造与废弃物料资源化利用* |
基于PSO-BP和GA-BP神经网络再生砖骨料混凝土强度模型的对比研究
黄炜1,2,3, 周烺2, 葛培2, 杨涛2
1 西安建筑科技大学西部绿色建筑国家重点实验室,西安 710055
2 西安建筑科技大学土木工程学院,西安 710055
3 西安建筑科技大学结构工程与抗震教育部重点实验室,西安 710055
A Comparative Study on Compressive Strength Model of Recycled BrickAggregate Concrete Based on PSO-BP and GA-BP Neural Networks
HUANG Wei1,2,3, ZHOU Lang2, GE Pei2, YANG Tao2
1 State Key Laboratory of Green Building in Western China, Xi’an University of Architecture & Technology, Xi’an 710055, China
2 School of Civil Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, China
3 Key Laboratory of Structural Engineering and Earthquake Resistance of Ministry of Education, Xi’an University of Architecture & Technology, Xi’an 710055, China
下载:  全 文 ( PDF ) ( 4766KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用两种混合算法人工神经网络模型(PSO-BP和GA-BP)预测具有不同砖骨料替代率的再生砖骨料混凝土(RBAC)的抗压强度。以RBAC的水泥质量、水灰比、碎瓷砖(CT 0—5,CT 5—32.5)替代率、碎砖(CB 0—5,CB 5—32.5)替代率及天然骨料(NA 0—5,NA 5—32.5)替代率等八个参数作为混合神经网络模型的输入参数,28 d立方体抗压强度作为输出参数。使用均方根误差(RMSE)、相关系数(R)和平均误差率对两种模型进行验证和对比分析。结果表明,PSO-BP模型与GA-BP模型都能实现高精度的预测,具有强大的泛化能力,总体而言,PSO-BP模型稍好于GA-BP模型,且都优于BP模型。同时,这也证明提出的混合算法神经网络有助于寻找最佳的RBAC配合比设计,提高实验效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄炜
周烺
葛培
杨涛
关键词:  人工神经网络  粒子群算法  遗传算法  再生砖骨料  抗压强度  混凝土    
Abstract: Two hybrid algorithm artificial neural network models (PSO-BP and GA-BP) are used to predict the compressive strength of recycled brick aggregate concrete (RBAC) with different brick aggregate replacement rates. The cement quality, water-cement ratio, replacement rate of broken ceramic tile (CT 0—5, CT 5—32.5), broken brick (CB 0—5, CB 5—32.5) and natural aggregate (NA 0—5, NA 5—32.5) of RBAC were used as input parameters of the hybrid neural network model, and the 28 day cube compressive strength was taken as output parameter. Root mean square error (RMSE), correlation coefficient (R) and average error rate were used to verify and compare the two models. The results show that both the PSO-BP model and the GA-BP model can achieve high-precision prediction and have strong generalization capabilities, In ge-neral the PSO-BP model is slightly better than the GA-BP,and both are better than BP model. At the same time, it also proves that the proposed hybrid algorithm neural network is helpful to find the best RBAC mix ratio design and improve the experimental efficiency.
Key words:  artificial neural network    particle swarm optimization    genetic algorithm    recycled brick aggregate    compressive strength    concrete
               出版日期:  2021-08-10      发布日期:  2021-08-31
ZTFLH:  TU528  
  TP312  
基金资助: 国家自然科学基金(51978566);陕西省重点研发计划项目-重点产业创新链项目(2020ZDLNY06-04)
作者简介:  黄炜,西安建筑科技大学教授,硕士研究生导师,西安建筑科技大学建筑工程新技术研究所所长,陕西省土木学会装配式建筑委员会副主任委员,陕西省中青年科技创新领军人才。近年来一直从事新型结构体系、工程结构抗震及强度理论等方面的研究工作。作为项目负责人和主要完成人参加了中国博士后基金、国家自然科学基金、国家“十五”科技攻关等多项课题的研究工作,在《建筑结构学报》《土木工程学报》《工程力学》等学术期刊发表论文40多篇。
周烺,西安建筑科技大学硕士研究生,主要从事绿色装配式再生材料方向的研究。
引用本文:    
黄炜, 周烺, 葛培, 杨涛. 基于PSO-BP和GA-BP神经网络再生砖骨料混凝土强度模型的对比研究[J]. 材料导报, 2021, 35(15): 15026-15030.
HUANG Wei, ZHOU Lang, GE Pei, YANG Tao. A Comparative Study on Compressive Strength Model of Recycled BrickAggregate Concrete Based on PSO-BP and GA-BP Neural Networks. Materials Reports, 2021, 35(15): 15026-15030.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070041  或          http://www.mater-rep.com/CN/Y2021/V35/I15/15026
1 Gao Chang, Huang Liang, Yan Libo, et al. Composite Structures,2016,155,245.
2 Khatib J M. Cement and Concrete Research,2004,35(4),763.
3 Wang H, Huang H B, Hu B C, et al. Building Technology Development,2013,40(10),30(in Chinese).
王晖,黄洪斌,胡丙臣,等.建筑技术开发,2013,40(10),30.
4 Liu Q, Zhang X N. Applied Mechanics and Materials,2014,584-586,1362.
5 Debieb F, Kenai S. Construction and Building Materials,2008,22(5),886.
6 Li C, Li T, Li Z, et al. China Civil Engineering Journal,2017,50(S1),145(in Chinese).
李超,李涛,李正,等.土木工程学报,2017,50(S1),145.
7 Lu J Z, Lin G. China Civil Engineering Journal,2003(4),38(in Chinese).
逯静洲,林皋.土木工程学报,2003(4),38.
8 Muhammad Nasir, Uneb Gazder, Mohammed Maslehuddin, et al. Ara-bian Journal for Science and Engineering,2020,45(1),4111.
9 Tanja Kalman Šipoš, Ivana Miliević ,Rafat Siddique. Construction and Building Materials,2017,148,757.
10 Asteris P G, Kolovos K G. Neural Computing and Applications,2017,31,409.
11 Khademi F, Akbari M, Jamal S M, et al. Frontiers of Structural and Civil Engineering,2017,11(1),99.
12 Zhao M. Prediction of strength of recycled thermal insulation concrete based on genetic algorithm optimized neural network. Master’s Thesis, Taiyuan University of Technology, China,2018(in Chinese).
赵敏.基于遗传算法优化神经网络的再生保温混凝土强度预测.硕士学位论文,太原理工大学,2018.
13 Han I J, Yuan T F, Lee J Y, et al. Materials,2019,12(22),3708.
14 Zheng Chaocan, Lou Cong, Du Geng, et al. Results in Physics,2018,9,1317.
15 Dang Jun tao, Zhao Jun. Construction and Building Materials,2019,228,116757.
16 Zhang B, Li S T, Zhong Y H, et al. Journal of Dalian University of Technology,2020(1),75(in Chinese).
张蓓,李松涛,钟燕辉,等.大连理工大学学报,2020(1),75.
17 Chen Q, Ma R, Jiang Z W, et al. Journal of Building Materials,2020,23(1),176(in Chinese).
陈庆,马瑞,蒋正武,等.建筑材料学报,2020,23(1),176.
18 Dac-Khuong Bui, Tuan Nguyen, Jui-Sheng Chou, et al. Construction and Building Materials,2018,180,320.
19 Dao D, Trinh S, Ly H B, et al. Applied Sciences,2019,9(6),1113.
[1] 石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
[2] 李崇智, 王梦宇, 牛振山. 渗透结晶型表面防护剂对混凝土耐久性的影响[J]. 材料导报, 2021, 35(Z1): 247-250.
[3] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[4] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[5] 牛建刚, 许文明, 梁剑. 受压区局部约束塑钢纤维轻骨料混凝土梁的抗弯性能[J]. 材料导报, 2021, 35(8): 8056-8063.
[6] 陈宗平, 周济, 王成, 苏炜炜. 高温喷水冷却后圆钢管再生混凝土短柱轴压性能试验及剩余承载力评估[J]. 材料导报, 2021, 35(7): 7033-7041.
[7] 杨世玉, 赵人达, 曾宪帅, 贾文涛, 靳贺松, 李福海. 用自然纤维增强地聚物材料:综述[J]. 材料导报, 2021, 35(7): 7107-7113.
[8] 刘益良, 苏幼坡, 殷尧, 赵江山, 王硕, 莫宗云. 膨润土改性胶凝材料的研究进展[J]. 材料导报, 2021, 35(5): 5040-5052.
[9] 陈新明, 史玉良, 焦华喆, 靳翔飞, 吴亚闯, 谭毅. 基于搜索锥算法的纤维分布特征及对BFRC的增强机制[J]. 材料导报, 2021, 35(4): 4061-4066.
[10] 张戎令, 郝兆峰, 王起才, 马丽娜, 吕文达, 李文波. 核心混凝土缺陷对钢管混凝土构件徐变影响规律及预测模型研究[J]. 材料导报, 2021, 35(4): 4099-4104.
[11] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[12] 王尚伟, 朱海堂, 王博, 寇磊. 混凝土配合比优化设计的紧密堆积理论综述[J]. 材料导报, 2021, 35(3): 3085-3091.
[13] 孙国文, 王朋硕, 张营, 闫娜. 水下不分散混凝土性能的研究进展[J]. 材料导报, 2021, 35(3): 3092-3103.
[14] 钱珊珊, 姚燕, 王子明, 崔素萍, 刘晓, 郑春扬. 降低高强混凝土黏度的减水剂制备与机理研究[J]. 材料导报, 2021, 35(2): 2046-2051.
[15] 柴源, 牛勇, 李文杰, 吕海波. 珊瑚骨料混凝土改性技术研究进展[J]. 材料导报, 2021, 35(15): 15134-15142.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed