Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 21080061-6    https://doi.org/10.11896/cldb.21080061
  金属与金属基复合材料 |
电子束熔炼新型Ni-Co基高温合金过程中合金元素的挥发行为及熔池温度计算
王以霖1,2, 谭毅1,2,*, 崔传勇3, 游小刚1,2, 赵龙海1,2, 崔弘阳1,2, 李鹏廷1,2, 李晓娜1,4
1 大连理工大学材料科学与工程学院,辽宁 大连 116024
2 辽宁省载能束冶金及先进材料制备重点实验室,辽宁 大连 116024
3 中国科学院金属研究所高温合金部,沈阳 110016
4 大连理工大学三束材料改性教育部重点实验室,辽宁 大连 116024
Evaporation Behavior of Alloying Elements and Calculation of Molten Pool Temperature in Electron Beam Smelting of a New Ni-Co Based Superalloy
WANG Yilin1.2, TAN Yi1,2,*, CUI Chuanyong3, YOU Xiaogang1,2, ZHAO Longhai1,2, CUI Hongyang1,2, LI Pengting1,2, LI Xiaona1,4
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 , Liaoning, China
2 Key Laboratory for Energy Beam Metallurgy and Advanced Materials Preparation of Liaoning Province, Dalian 116024, Liaoning, China
3 Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences,Shenyang 110016, China
4 Key Laboratory of Material Modification by Laser, Ion and Electron Beam Ministry of Education, Dalian University of Technology, Dalian 116024, Liaoning, China
下载:  全 文 ( PDF ) ( 14152KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用电子束熔炼方法制备了新型Ni-Co基高温合金,对熔炼后铸锭的显微组织、成分、合金元素挥发行为以及熔池表面温度分布进行了研究。结果表明,随着熔炼功率的增加,铸锭的显微组织越来越细,质量损失越来越大。熔炼后Cr和Al的质量分数下降,其余元素质量分数上升。在相同温度下,纯元素Al的饱和蒸气压最大,W的饱和蒸汽压最小。将熔体系统简化为 Ni-Cr-Co 三元合金模型来研究其挥发行为,合金元素的活度系数和活度可采用Miedema模型预测,Ti、Mo、W元素的理论挥发速率很小,挥发损失基本可以忽略不计。Al元素的挥发速率通过引入活度系数补偿因子计算。熔炼功率为10 kW、12 kW、14 kW时熔池的平均温度分别为1 863.6 K、1 890.6 K和1 904.3 K,对应的熔池最高温度分别为2 368.1 K、2 402.4 K、2 419.8 K。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王以霖
谭毅
崔传勇
游小刚
赵龙海
崔弘阳
李鹏廷
李晓娜
关键词:  高温合金  电子束熔炼  元素挥发  温度分布    
Abstract: A new Ni-Co based superalloy was prepared by electron beam smelting. The microstructure, composition, volatilization behavior of alloy elements and temperature distribution of molten pool surface were studied. The results show that with the increase of melting power, the microstructure of ingot is finer and the mass loss is larger. After smelting, the mass fractions of Cr and Al decrease, and the mass fraction of the remaining elements increase. At the same temperature, the saturated vapor pressure of pure Al element is the highest and that of W is the lowest. The melt system was simplified to a Ni-Cr-Co ternary alloy model to study its volatilization behavior. The activity coefficients and activities of alloying elements can be predicted by Miedema model. The theoretical volatilization rates of Ti, Mo and W elements are very small, and the volatilization loss can be ignored basically. The volatilization rate of Al element was calculated by introducing activity coefficient compensation factor. The ave-rage temperature of the molten pool with the melting power of 10 kW, 12 kW and 14 kW is 1 863.6 K, 1 890.6 K and 1 904.3 K respectively, and the corresponding maximum temperature of the molten pool is 2 368.1 K, 2 402.4 K and 2 419.8 K.
Key words:  superalloy    electron beam smelting    element evaporation    temperature distribution
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TF134  
基金资助: 国家重点研发计划(2019YFA0705300);国家自然科学基金(52004051);大连市重点领域创新团队(2019RT13)
通讯作者:  * 谭毅,大连理工大学教授。1983年7月毕业于大连理工大学,获得学士学位;1986年7月毕业于大连理工大学,获得硕士学位;1993年3月毕业于东京工业大学,获得博士学位。主要研究方向为高温合金、钛合金、多晶硅、储能材料及相关装备的研发。发表论文230 余篇,申报国际、国家及与企业合作发明专利220余项,承担国家科技支撑计划项目等20余项。lnsolar@dlut.edu.cn   
作者简介:  王以霖,2019年6月毕业于沈阳航空航天大学,获得工学学士学位,现为大连理工大学材料科学与工程学院硕士研究生,在谭毅教授的指导下进行研究。目前主要研究领域为合金的熔炼与组织调控。
引用本文:    
王以霖, 谭毅, 崔传勇, 游小刚, 赵龙海, 崔弘阳, 李鹏廷, 李晓娜. 电子束熔炼新型Ni-Co基高温合金过程中合金元素的挥发行为及熔池温度计算[J]. 材料导报, 2023, 37(1): 21080061-6.
WANG Yilin, TAN Yi, CUI Chuanyong, YOU Xiaogang, ZHAO Longhai, CUI Hongyang, LI Pengting, LI Xiaona. Evaporation Behavior of Alloying Elements and Calculation of Molten Pool Temperature in Electron Beam Smelting of a New Ni-Co Based Superalloy. Materials Reports, 2023, 37(1): 21080061-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080061  或          http://www.mater-rep.com/CN/Y2023/V37/I1/21080061
1 Chen X, Lin Y, Wu F. Journal of Alloys Compounds, 2017, 724, 198.
2 Lin Y C, Yang H, Li L. Vacuum, 2017, 144, 86.
3 Shankar V, Rao K, Mannan S L. Journal of Nuclear Materials, 2001, 288(2-3), 222.
4 Hao J, Qin S, Yan L, et al. Journal of Alloys Compounds, 2021, 873, 159854.
5 Lin X, Lin Y, Li X, et al. Vacuum, 2018, 149, 1.
6 Gu Y F, Harada H, Cui C Y, et al. Scripta Materialia, 2006, 55, 815.
7 You X G, Yi T, You Q F, et al. Journal of Alloys Compounds, 2016, 676, 202.
8 Lu T, Tan Y, Shi S, et al. Vacuum, 2017, 143, 336.
9 You X G. Preparation of Inconel 718 alloy by electron beam refining and its properties. Ph. D. Thesis, Dalian University of Technology, China, 2018(in Chinese).
游小刚. 电子束精炼制备Inconel 718合金及其性能研究. 博士学位论文, 大连理工大学, 2018.
10 Choudhury A, Hengsberger E. ISIJ Int, 1992, 32, 673.
11 Shi S, Li P T, Meng J, et al. Physical Chemistry Chemical Physics, 2017, 19(41), 28424.
12 You Q F. Preparation of high purity FGH4096 mother alloy by electron beam refining and its purification behavior. Ph. D. Thesis, Dalian University of Technology, China, 2018(in Chinese).
尤启凡. 电子束精炼制备高纯FGH4096母合金及其纯净化行为研究. 博士学位论文, 大连理工大学, 2018.
13 Liu H P, Shi S, You Q F, et al. Vacuum, 2018, 157, 395.
14 Niu S Q, Zhao L H, You X G. Vacuum, 2021, 187, 110073.
15 Wang L N, Sun X F, Guan H R. Results in Physics, 2017, 7, 2111.
16 Juechter V, Scharowsky T, Singer R F, et al, Acta Materialia, 2014, 76, 252.
17 Safarian J, Tangstad M. Metallurgical and Materials Transactions B, 2012, 43(6), 1427.
18 Kvande R, Mjos O, Ryningen B. Materials Science and Engineering A, 2005, 413, 545.
19 You Q, Shi S, You X, et al. Vacuum, 2017, 135, 135.
20 Kvande R, Geerligs L J, Coletti G, et al. Journal of Applied Physics, 2008, 104(6), 064905.
21 Safarian J, Tangstad M. High Temperature Materials and Processes, 2012, 31(1), 73.
22 You X, Shi S, Tan Y, et al. Vacuum, 2019, 169, 108920.
23 Zhao L, Tan Y, Shi S, et al. Journal of Alloys Compounds, 2020, 833, 155019.
24 Jiang D, Tan Y, Shi S, et al. Materials Letters, 2012, 78, 4.
25 Gao X Y, Zhang L, Chen X W. Vacuum, 2020, 177, 109409.
[1] 李翠芹, 裴玉冰, 范华, 郭维华, 王天剑, 吴比, 巩秀芳. 火电机组高中压转子选材的研究进展[J]. 材料导报, 2022, 36(Z1): 22010097-7.
[2] 张朝, 黄太文, 蒲茜, 张家晨, 张军, 苏海军, 郭敏, 刘林. 流态床冷却定向凝固技术研究进展[J]. 材料导报, 2022, 36(7): 20090249-6.
[3] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[4] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[5] 窦学铮, 蒋立武, 宋尽霞, 赵云松. 镍基单晶高温合金力学性能各向异性的研究进展[J]. 材料导报, 2022, 36(24): 21040222-15.
[6] 解传滨, 吴皓然, 王慧聪, 刘景叶, 张修海. Ni-xCr-ySc(x=5,15,25,35;y=0,1)合金的高温抗氧化性能[J]. 材料导报, 2022, 36(23): 21040192-5.
[7] 刘佳宾, 刘新灵, 李振. 粉末高温合金夹杂物引起疲劳裂纹萌生微观机理研究现状[J]. 材料导报, 2021, 35(z2): 385-390.
[8] 李博帅, 鲁金涛, 朱明, 黄锦阳, 党莹樱, 谷月峰. 镍铁基高温合金摩擦焊接接头在煤灰/烟气中的腐蚀行为[J]. 材料导报, 2021, 35(Z1): 395-401.
[9] 张梦杰, 李翔, 乔师帅, 王元, 魏剑. 改性碳纳米管水泥基复合材料热电非平衡融冰性能[J]. 材料导报, 2021, 35(8): 8049-8055.
[10] 徐仰涛, 马腾飞, 王永红. 钽元素对Co-8.8Al-9.8W合金微观组织和力学性能的影响规律[J]. 材料导报, 2021, 35(22): 22104-22108.
[11] 许章华, 谢志雄, 康茂东, 王俊, 董仕节, 彭志贤, 刘静. K4169高温合金铸件铸造缺陷修复及疲劳性能研究[J]. 材料导报, 2021, 35(22): 22115-22120.
[12] 权国政, 温志航, 沈力, 马遥遥, 张普, 张钰清, 詹宗杨. 镍基高温合金热塑性变形晶粒细化与粗化的博弈关系及演进[J]. 材料导报, 2021, 35(18): 18124-18130.
[13] 单国雷, 王龙, 孙元, 陈振斌, 李晓明, 张洪宇, 裴逍遥. 镍基单晶高温合金资源中关键金属的浸出行为研究[J]. 材料导报, 2021, 35(10): 10134-10140.
[14] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
[15] 王晓娟,刘林,黄太文,杨文超,岳全召,霍苗,张军,傅恒志. 碳对镍基单晶高温合金凝固缺陷影响的研究进展[J]. 材料导报, 2020, 34(3): 3148-3156.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed